forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
98 lines (79 loc) · 3.82 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
from dataclasses import dataclass, field
import paddle
from paddle.distributed import fleet
from predictor import ModelArgument, PredictorArgument, create_predictor
from tqdm import tqdm
from utils import generate_rank_mapping, get_infer_model_path
from paddlenlp.trainer import PdArgumentParser
from paddlenlp.utils.log import logger
@dataclass
class ExportArgument:
output_path: str = field(default=None, metadata={"help": "The output path of model."})
def load_inference_model(model_path, model_name, param_name, exe):
model_abs_path = os.path.join(model_path, model_name)
param_abs_path = os.path.join(model_path, param_name)
if os.path.exists(model_abs_path) and os.path.exists(param_abs_path):
return paddle.static.io.load_inference_model(model_path, exe, model_name, param_name)
else:
return paddle.static.io.load_inference_model(model_path, exe)
def validate_pdmodel(model_path, model_prefix):
paddle.enable_static()
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
scope = paddle.static.Scope()
with paddle.static.scope_guard(scope):
net_program, feed_target_names, fetch_targets = paddle.static.io.load_inference_model(
os.path.join(model_path, model_prefix), exe
)
for block in net_program.blocks:
ops: list[paddle.framework.Operator] = block.ops
for op in tqdm(ops, desc="checking the validation of ops"):
if op.type.lower() == "print":
logger.warning(f"UNEXPECTED OP<{op.type}> which will reduce the performace of the static model")
def main():
parser = PdArgumentParser((PredictorArgument, ModelArgument, ExportArgument))
predictor_args, model_args, export_args = parser.parse_args_into_dataclasses()
paddle.set_default_dtype(predictor_args.dtype)
tensor_parallel_degree = paddle.distributed.get_world_size()
tensor_parallel_rank = paddle.distributed.get_rank()
if tensor_parallel_degree > 1:
strategy = fleet.DistributedStrategy()
strategy.hybrid_configs = {
"dp_degree": 1,
"mp_degree": tensor_parallel_degree,
"pp_degree": 1,
"sharding_degree": 1,
}
fleet.init(is_collective=True, strategy=strategy)
hcg = fleet.get_hybrid_communicate_group()
tensor_parallel_rank = hcg.get_model_parallel_rank()
# set predictor type
predictor = create_predictor(predictor_args, model_args, tensor_parallel_degree, tensor_parallel_rank)
predictor.model.eval()
predictor.model.to_static(
get_infer_model_path(export_args.output_path, predictor_args.model_prefix),
{"dtype": predictor_args.dtype, "export_precache": predictor_args.export_precache},
)
predictor.model.config.save_pretrained(export_args.output_path)
predictor.tokenizer.save_pretrained(export_args.output_path)
generate_rank_mapping(os.path.join(export_args.output_path, "rank_mapping.csv"))
if tensor_parallel_degree > 1:
export_args.output_path = os.path.join(export_args.output_path, f"rank_{tensor_parallel_rank}")
validate_pdmodel(export_args.output_path, predictor_args.model_prefix)
if __name__ == "__main__":
main()