forked from tidyverse/datascience-box
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02-looking-further.Rmd
149 lines (109 loc) · 4.26 KB
/
02-looking-further.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Looking further {#looking-forward}
In the last unit we present a series of modules such as interactive reporting and visualization with Shiny, text analysis, machine learning, and Bayesian inference.
These are independent modules that educators can choose to include in their introductory data science curriculum depending on how much time they have left in the semester.
Note that the slides in this unit are a bit more sparse than the others, and much of the content is delivered as live coding sessions.
## Slides, videos, and application exercises
::: {.slide-deck}
**Unit 5 - Deck 1: Text analysis**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d01-text-analysis/u5-d01-text-analysis.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u5-d01-text-analysis)
:::
::: {.video}
[Video](https://youtu.be/_YqEHZccujc)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 2: Comparing texts**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d02-comparing-texts/u5-d02-comparing-texts.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u5-d02-comparing-texts)
:::
::: {.video}
[Video](https://youtu.be/Q79feeFbsxM)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 3: Interactive web apps**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d03-interactive-web-app/u5-d03-interactive-web-app.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u5-d03-interactive-web-app)
:::
::: {.video}
[Video](https://youtu.be/gXBEOFWrxsk)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 4: Machine learning**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d04-machine-learning/u5-d04-machine-learning.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u5-d04-machine-learning)
:::
::: {.video}
[Video](https://youtu.be/IP5skNjwo7A)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 5: Interactive data visualisation**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d05-shiny-1/u5-d05-shiny-1.pdf)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 6: Interactive data visualisation and reporting**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d05-shiny-2/u5-d05-shiny-2.pdf)
:::
:::
::: {.slide-deck}
**Unit 5 - Deck 7: Bayesian inference**
::: {.slides}
[Slides](https://rstudio-education.github.io/datascience-box/course-materials/slides/u5-d07-bayes-inf/u5-d07-bayes-inf.html#1)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/slides/u5-d07-bayes-inf)
:::
:::
## Labs
::: {.lab}
**Lab 13: Working on projects**
Fitting and interpreting simple linear regression models
::: {.instructions}
[Instructions](https://rstudio-education.github.io/datascience-box/course-materials/lab-instructions/lab-13/lab-13-work-on-projects.html)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/lab-instructions/lab-13)
:::
:::
::: {.lab}
**Lab 14: Collaboration on GitHub**
Fitting and interpreting simple linear regression models
::: {.instructions}
[Instructions](https://rstudio-education.github.io/datascience-box/course-materials/lab-instructions/lab-14/lab-14-collaborating-on-github.html)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/lab-instructions/lab-14)
:::
:::
## Homework assignments
::: {.homework}
**HW 10: Wrapping up**
Model validation and inference
::: {.instructions}
[Instructions](https://rstudio-education.github.io/datascience-box/course-materials/hw-instructions/hw-10/hw-10-wrap-up.html)
:::
::: {.source}
[Source](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/hw-instructions/hw-10)
:::
::: {.starter}
[Starter](https://github.com/rstudio-education/datascience-box/tree/master/course-materials/starters/hw/hw-10-wrap-up)
:::
:::