###决策树简介
决策树 流程图正方形代表判断模块,椭圆形代表终止模块,从判断模块引出的左右箭头称作分支,它可以到达另一个判断模块活着终止模块。 决策树 [优点]:计算复杂度不高,输出结果易于理解,对于中间值的缺失不敏感,可以处理不相关特征数据。 决策树[缺点]:可能会产生过度匹配的问题。 决策树[适用数据类型]:数值型和标称型。
###决策树的一般流程
(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们需要检验图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:使用于任何监督学习算法。
###信息增益
划分数据集的最大原则:将无序的数据集变的有序。 判断数据集的有序程度:信息增益(熵),计算每个特征值划分数据集后获得的信息增益,获得信息增益最高的特征就是最好的选择。 信息增益[公式]: $$ H = - \sum_{i=1}^np(x_i)log_2p(x_i) $$ 其中n是分类的数目。
###python决策树
from math import log
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * log(prob,2)
return shannonEnt
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no'],]
labels = ['no surfacing','flippers']
return dataSet,labels
myDat,labels = createDataSet()
print(myDat)
print(labels)
shannonEnt = calcShannonEnt(myDat)
print(shannonEnt)
import dtree
def splitDataset(dataSet,axis,value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
myData,labels = dtree.createDataSet()
print(myData)
retDataSet = splitDataset(myData,0,1)
print(retDataSet)
retDataSet = splitDataset(myData,0,0)
print(retDataSet)
####选择最好的数据划分方式
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = dtree.calcShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataset(dataSet,i,value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * dtree.calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if(infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
myData,labels = dtree.createDataSet()
print('myData:',myData)
bestFeature = chooseBestFeatureToSplit(myData)
print('bestFeature:',bestFeature)
#####结果输出
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('bestFeature:', 0)
#####结果分析
运行结果表明第0个特征是最好用于划分数据集的特征,即数据集的的第一个参数,比如在该数据集中以第一个参数特征划分数据时,第一个分组中有3个,其中有一个被划分为no,第二个分组中全部属于no;当以第二个参数分组时,第一个分组中2个为yes,2个为no,第二个分类中只有一个no类。
###递归构建决策树
工作原理:得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于2个,因此可能存在大于2个分支的数据集划分,在第一次划分后,数据将被传向树分支的下一个节点,在这个节点上我们可以再次划分数据。 递归条件:程序遍历完所有划分数据集的属性,或者没个分支下的所有实例都具有相同的分类。
import dtree
import operator
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] +=1
sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classlist)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataset(dataSet,bestFeat,value),subLabels)
return myTree
myData,labels = dtree.createDataSet()
print('myData:',myData)
myTree = createTree(myData,labels)
print('myTree:',myTree)
('myData:', [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']])
('myTree:', {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}})
myTree 包含了树结构信息的前套字典,第一个关键字no surfacing是第一个划分数据集的特征名称,值为另一个数据字典,第二个关键字是no surfacing特征划分的数据集,是no surfacing的字节点,如果值是类标签,那么该节点为叶子节点,如果值是另一个数据字典,那么该节点是个判断节点,如此递归。
###测试算法:使用决策树执行分类 ####使用决策树的分类函数
import treeplotter
import dtree
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__=='dict':
classLabel = classify(secondDict[key],featLabels,testVec)
else:
classLabel = secondDict[key]
return classLabel
myDat,labels = dtree.createDataSet()
print(labels)
myTree = myTree = treeplotter.retrieveTree(0)
print(myTree)
print('classify(myTree,labels,[1,0]):',classify(myTree,labels,[1,0]))
print('classify(myTree,labels,[1,1]):',classify(myTree,labels,[1,1]))
#####结果输出
['no surfacing', 'flippers']
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}
('classify(myTree,labels,[1,0]):', 'no')
('classify(myTree,labels,[1,1]):', 'yes')
####存储决策树
由于决策树的构造十分耗时,所以用创建好的决策树解决分类问题可以极大的提高效率。因此需要使用python模块pickle序列化对象,序列化对象可以在磁盘上保存对象,并在需要的地方读取出来,任何对象都可以执行序列化操作。
#使用pickle模块存储决策树
import pickle
def storeTree(inputTree,filename):
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()
def grabTree(filename):
fr = open(filename)
return pickle.load(fr)
###决策树算法小结
决策树分类器就像带有终止块的流程图,终止块表示分类结果。首先我们需要测量集合数据中的熵即不一致性,然后寻求最优方案划分数据集,直到数据集中的所有数据属于同一分类。决策树的构造算法有很多版本,本文中用到的是ID3 ,最流行的是C4.5和CART。