-
Notifications
You must be signed in to change notification settings - Fork 50
/
experiment_InvTry.py
432 lines (358 loc) · 18.4 KB
/
experiment_InvTry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import numpy as np
import tensorflow as tf
import pdb
import random
import json
from scipy.stats import mode
import data_utils
import plotting
import model
import utils
import eval
import DR_discriminator
from time import time
from math import floor
import mmd
from mmd import rbf_mmd2, median_pairwise_distance, mix_rbf_mmd2_and_ratio
tf.logging.set_verbosity(tf.logging.ERROR)
# --- get settings --- #
# parse command line arguments, or use defaults
parser = utils.rgan_options_parser()
settings = vars(parser.parse_args())
# if a settings file is specified, it overrides command line arguments/defaults
if settings['settings_file']: settings = utils.load_settings_from_file(settings)
# --- get data, split --- #
samples, pdf, labels = data_utils.get_samples_and_labels(settings)
# samples_aaa = np.load('./data/samples_aa.npy')
# labels_aaa = np.load('./data/labels_aa.npy')
# --- save settings, data --- #
print('Ready to run with settings:')
for (k, v) in settings.items(): print(v, '\t', k)
# add the settings to local environment
# WARNING: at this point a lot of variables appear
locals().update(settings)
json.dump(settings, open('./experiments/settings/' + identifier + '.txt', 'w'), indent=0)
if not data == 'load':
data_path = './experiments/data/' + identifier + '.data.npy'
np.save(data_path, {'samples': samples, 'pdf': pdf, 'labels': labels})
print('Saved training data to', data_path)
# --- build model --- #
Z, X, T, CG, CD, CS = model.create_placeholders(batch_size, seq_length, latent_dim, num_signals, cond_dim)
discriminator_vars = ['hidden_units_d', 'seq_length', 'cond_dim', 'batch_size', 'batch_mean']
discriminator_settings = dict((k, settings[k]) for k in discriminator_vars)
generator_vars = ['hidden_units_g', 'seq_length', 'batch_size', 'num_generated_features', 'cond_dim', 'learn_scale']
generator_settings = dict((k, settings[k]) for k in generator_vars)
CGAN = (cond_dim > 0)
if CGAN: assert not predict_labels
D_loss, G_loss= model.GAN_loss(Z, X, generator_settings, discriminator_settings,
kappa, CGAN, CG, CD, CS, wrong_labels=wrong_labels)
D_solver, G_solver, priv_accountant = model.GAN_solvers(D_loss, G_loss, learning_rate, batch_size,
total_examples=samples['train'].shape[0],
l2norm_bound=l2norm_bound,
batches_per_lot=batches_per_lot, sigma=dp_sigma, dp=dp)
G_sample = model.generator(Z, **generator_settings, reuse=True, c=CG)
D_t, L_t = model.discriminator(T, **discriminator_settings, reuse=True,)
# D_pro = tf.reduce_mean(D_t)
D_pro = D_t
L_pro = L_t
# --- evaluation --- #
# frequency to do visualisations
vis_freq = max(6600 // num_samples, 1)
eval_freq = max(6600// num_samples, 1)
# get heuristic bandwidth for mmd kernel from evaluation samples
heuristic_sigma_training = median_pairwise_distance(samples['vali'])
best_mmd2_so_far = 1000
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# tf.initialize_all_variables().run()
vis_Z = model.sample_Z(batch_size, seq_length, latent_dim, use_time)
T_mb, L_mb = model.sample_T(batch_size)
# T_indices = np.random.choice(len(samples_aaa), size=batch_size)
# T_mb = samples_aaa[T_indices, :, :]
# L_mb = labels_aaa[T_indices, :, :]
# create VARIABLE Z for invert generation
# Zs = tf.get_variable(name='Zs', shape=[batch_size, seq_length, latent_dim], initializer=tf.random_normal_initializer())
# aaa = Zs.shape
# print('Zs:{}'.format(aaa))
# sess.run(tf.global_variables_initializer())
# Z_latent = sess.run(Zs, feed_dict=None)
# generate vis_sample
if CGAN:
vis_C = model.sample_C(batch_size, cond_dim, max_val, one_hot)
if 'mnist' in data:
if one_hot:
if cond_dim == 6:
vis_C[:6] = np.eye(6)
elif cond_dim == 3:
vis_C[:3] = np.eye(3)
vis_C[3:6] = np.eye(3)
else:
raise ValueError(cond_dim)
else:
if cond_dim == 6:
vis_C[:6] = np.arange(cond_dim)
elif cond_dim == 3:
vis_C = np.tile(np.arange(3), 2)
else:
raise ValueError(cond_dim)
elif 'eICU_task' in data:
vis_C = labels['train'][np.random.choice(labels['train'].shape[0], batch_size, replace=False), :]
vis_sample = sess.run(G_sample, feed_dict={Z: vis_Z, CG: vis_C})
else:
vis_sample = sess.run(G_sample, feed_dict={Z: vis_Z}) # what is this for? this is the generation process...following is validation process
vis_C = None
# plot the real data
vis_real_indices = np.random.choice(len(samples['vali']), size=16, replace=False)
vis_real = np.float32(samples['vali'][vis_real_indices, :, :])
if not labels['vali'] is None:
vis_real_labels = labels['vali'][vis_real_indices]
else:
vis_real_labels = None
if data == 'mnist':
if predict_labels:
assert labels['vali'] is None
n_labels = 1
if one_hot:
n_labels = 6
lab_votes = np.argmax(vis_real[:, :, -n_labels:], axis=2)
else:
lab_votes = vis_real[:, :, -n_labels:]
labs, _ = mode(lab_votes, axis=1)
samps = vis_real[:, :, :-n_labels]
else:
labs = None
samps = vis_real
if multivariate_mnist:
plotting.save_mnist_plot_sample(samps.reshape(-1, seq_length ** 2, 1), 0, identifier + '_real', n_samples=6,
labels=labs)
else:
plotting.save_mnist_plot_sample(samps, 0, identifier + '_real', n_samples=6, labels=labs)
elif 'eICU' in data:
plotting.vis_eICU_patients_downsampled(vis_real, resample_rate_in_min,
identifier=identifier + '_real', idx=0)
else:
plotting.save_plot_sample(vis_real, 0, identifier + '_real', n_samples=16,
num_epochs=num_epochs)
# for dp
target_eps = [0.125, 0.25, 0.5, 1, 2, 4, 8]
dp_trace = open('./experiments/traces/' + identifier + '.dptrace.txt', 'w')
dp_trace.write('epoch ' + ' eps'.join(map(str, target_eps)) + '\n')
trace = open('./experiments/traces/' + identifier + '.trace.txt', 'w')
trace.write('epoch time D_loss G_loss mmd2 that sample_pdf real_pdf\n')
# --- train --- #
train_vars = ['batch_size', 'D_rounds', 'G_rounds', 'use_time', 'seq_length',
'latent_dim', 'num_generated_features', 'cond_dim', 'max_val',
'WGAN_clip', 'one_hot']
train_settings = dict((k, settings[k]) for k in train_vars)
t0 = time()
best_epoch = 0
print('epoch\ttime\tD_loss\tG_loss\tmmd2\tthat\tpdf_sample\tpdf_real')
for epoch in range(num_epochs):
D_loss_curr, G_loss_curr = model.train_epoch(epoch, samples['train'], labels['train'],
sess, Z, X, CG, CD, CS,
D_loss, G_loss,
D_solver, G_solver, **train_settings)
# save parameters
# model.dump_parameters(identifier + '_' + str(epoch), sess)
# -- eval -- #
# visualise plots of generated samples, with/without labels
if epoch % vis_freq == 0: #?
vis_ZZ = model.sample_Z(batch_size, seq_length, latent_dim, use_time)
T_mb, L_mb = model.sample_T(batch_size)
if CGAN:
vis_sample = sess.run(G_sample, feed_dict={Z: vis_Z, CG: vis_C})
else:
vis_sample = sess.run(G_sample, feed_dict={Z: vis_ZZ})
plotting.visualise_at_epoch(vis_sample, data, predict_labels, one_hot, epoch, identifier,
num_epochs, resample_rate_in_min, multivariate_mnist, seq_length, labels=vis_sample)
# DR_discriminator.save_samples(vis_sample, epoch)
D_test, L_test = sess.run([D_pro, L_pro], feed_dict={T: T_mb})
sss = D_test.shape
print('D_test shape:{}'.format(sss))
# DR_Pro = 1-tf.reduce_mean(D_test)
Accu1, Pre1, Rec1, F11, FPR1, D_L = DR_discriminator.detection_statistic(D_test, L_mb, 0.5)
print('point-wise-Epoch: {}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}'
.format(epoch, Accu1, Pre1, Rec1, F11, FPR1))
DR_discriminator.anomaly_detection_plot(D_test, T_mb, L_mb, D_L, epoch, identifier)
Accu, Pre, Rec, F1, FPR = DR_discriminator.sample_detection(D_test, L_mb, 0.5)
print('sample-wise-Epoch: {}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}'
.format(epoch, Accu, Pre, Rec1, F1, FPR))
f = open("./experiments/plots/Measures.txt", "a")
f.write('--------------------------------------------\n')
f.write('point-wise-Epoch: {}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}\n'
.format(epoch, Accu1, Pre1, Rec1, F11, FPR1))
f.write('sample-wise-Epoch: {}; Accu: {:.4}; Pre: {:.4}; Rec: {:.4}; F1: {:.4}; FPR: {:.4}\n'
.format(epoch, Accu, Pre, Rec, F1, FPR))
f.close()
## compute residuals
# cast samples to float32
ts_sample = np.float32(T_mb[:, :, :])
num = ts_sample.shape[0]
print('Inverting', num, 'samples using model', settings['identifier'], 'at epoch', epoch,)
e_tolerance = 0.1
print('until error is below', e_tolerance)
# get parameters
# parameters = load_parameters(settings['identifier'] + '_' + str(epoch))
# assertions
# assert samples.shape[2] == settings['num_generated_features']
# create VARIABLE Z for invert generation
fd = None
Zs = tf.get_variable(name='Zs', shape=[batch_size, seq_length, latent_dim], initializer=tf.random_normal_initializer())
aaa = Zs.shape
print('Zs:{}'.format(aaa))
sess.run(tf.global_variables_initializer())
Z_latent = sess.run(Zs, feed_dict=fd)
# Zs = model.sample_Z(batch_size, seq_length, latent_dim, use_time)
# create outputs
gs_sample = sess.run(G_sample, feed_dict={Z: Z_latent})
gs_sample = np.float32(gs_sample[:, :, :])
# gs_sample = model.generator(Zs, **generator_settings, reuse=True, c=CG)
# define loss mmd-based loss
heuristic_sigma = mmd.median_pairwise_distance_o(ts_sample) # this is noisy
print('heuristic_sigma:', heuristic_sigma)
Kxx, Kxy, Kyy, wts = mmd._mix_rbf_kernel(gs_sample, ts_sample, sigmas=tf.constant(value=heuristic_sigma, shape=(1, 1)))
similarity_per_sample = tf.diag_part(Kxy)
reconstruction_error_per_sample = 1 - similarity_per_sample
similarity = tf.reduce_mean(similarity_per_sample)
reconstruction_error = 1 - similarity
# updater
# from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer
# from differential_privacy.dp_sgd.dp_optimizer import sanitizer
# from differential_privacy.privacy_accountant.tf import accountant
# solver = tf.train.AdamOptimizer().minimize(reconstruction_error_per_sample, var_list=[Zs])
# solver = tf.train.RMSPropOptimizer(learning_rate=500).minimize(reconstruction_error, var_list=[Zs])
# solver = tf.train.RMSPropOptimizer(learning_rate=0.1).minimize(reconstruction_error_per_sample, var_list=Zs)
solver = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9).minimize(reconstruction_error_per_sample, var_list=[Zs])
# solver = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(reconstruction_error, var_list=[Zs])
# grad_Z = tf.gradients(reconstruction_error_per_sample, Zs)[0]
# grad_per_Z = tf.norm(grad_Z, axis=(1, 2))
# grad_norm = tf.reduce_mean(grad_per_Z)
# solver = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(reconstruction_error, var_list=[Zs])
print('Finding latent state corresponding to samples...')
# sess.run(tf.global_variables_initializer())
sess.run(tf.initialize_variables())
error = sess.run(reconstruction_error, feed_dict=fd)
# g_n = sess.run(grad_norm, feed_dict=fd)
# print(g_n)
i = 0
max_iter = 10000
while np.abs(error) > e_tolerance:
_ = sess.run(solver, feed_dict=fd)
error = sess.run(reconstruction_error, feed_dict=fd)
i += 1
# print(error)
if i > max_iter:
break
Zs = sess.run(Zs, feed_dict=fd)
error_per_sample = sess.run(reconstruction_error_per_sample, feed_dict=fd)
print('Z found in', i, 'iterations with final reconstruction error of', error)
tf.reset_default_graph()
# Zs, error_per_sample, heuristic_sigma = DR_discriminator.invert(settings, epoch-1, T_mb, g_tolerance=None, e_tolerance=0.1,
# n_iter=None, max_iter=10000, heuristic_sigma=None)
# GG = Zs.shape
# EE = error_per_sample.shape
#
# print('invert-Epoch: {}; GG: {}; error_per_sample: {}; heuristic_sigma: {}'
# .format(epoch-1, GG, EE, heuristic_sigma))
# compute mmd2 and, if available, prob density
if epoch % eval_freq == 0:
## how many samples to evaluate with?
# real_sample_indices = np.random.choice(len(samples['vali']), size=batch_size, replace=False)
# real_sample = np.float32(samples['vali'][real_sample_indices, :, :])
#
# gs_sample = vis_sample
#
# ## MMD
# heuristic_sigma = mmd.median_pairwise_distance_o(real_sample)
# Kxx, Kxy, Kyy, d = mmd._mix_rbf_kernel(gs_sample, real_sample, sigmas=tf.constant(value=heuristic_sigma, shape=(1, 1)))
# similarity_per_sample = tf.diag_part(Kxy)
# similarity = tf.reduce_mean(similarity_per_sample)
# generation_error = 1 - similarity
#
# # n_sigmas = 2
# # sigma = tf.get_variable(name='sigma', shape=n_sigmas, initializer=tf.constant_initializer(
# # value=np.power(heuristic_sigma, np.linspace(-1, 3, num=n_sigmas))))
# #
# # _eps = 1e-8
# # mmd2, ratio = mmd._mmd2_and_ratio(Kxx, Kxy, Kyy, const_diagonal=d, biased=False, min_var_est=_eps)
#
# # mmd2, ratio = sess.run(mix_rbf_mmd2_and_ratio(real_sample, gs_sample, sigma, wts=None, biased=True))
#
# G_error = sess.run(generation_error)
# mmd2 = G_roor
mmd2 = 'NA'
that_np = 'NA'
## prob density (if available)
if not pdf is None:
pdf_sample = np.mean(pdf(gs_sample[:, :, 0]))
pdf_real = np.mean(pdf(real_sample[:, :, 0]))
else:
pdf_sample = 'NA'
pdf_real = 'NA'
else:
# report nothing this epoch
mmd2 = 'NA'
that = 'NA'
pdf_sample = 'NA'
pdf_real = 'NA'
## get 'spent privacy'
if dp:
spent_eps_deltas = priv_accountant.get_privacy_spent(sess, target_eps=target_eps)
# get the moments
deltas = []
for (spent_eps, spent_delta) in spent_eps_deltas:
deltas.append(spent_delta)
dp_trace.write(str(epoch) + ' ' + ' '.join(map(str, deltas)) + '\n')
if epoch % 10 == 0: dp_trace.flush()
## print
t = time() - t0
try:
print('%d\t%.2f\t%.4f\t%.4f\t%.5f\t%.0f\t%.2f\t%.2f' % (
epoch, t, D_loss_curr, G_loss_curr, mmd2, that_np, pdf_sample, pdf_real))
except TypeError: # pdf are missing (format as strings)
print('%d\t%.2f\t%.4f\t%.4f\t%s\t%s\t %s\t %s' % (
epoch, t, D_loss_curr, G_loss_curr, mmd2, that_np, pdf_sample, pdf_real))
## save trace
trace.write(' '.join(map(str, [epoch, t, D_loss_curr, G_loss_curr, mmd2, that_np, pdf_sample, pdf_real])) + '\n')
if epoch % 10 == 0:
trace.flush()
plotting.plot_trace(identifier, xmax=num_epochs, dp=dp)
if shuffle: # shuffle the training data
perm = np.random.permutation(samples['train'].shape[0])
samples['train'] = samples['train'][perm]
if labels['train'] is not None:
labels['train'] = labels['train'][perm]
if epoch % eval_freq == 0:
model.dump_parameters(identifier + '_' + str(epoch), sess)
# # ----------------generate num_samples samples from the trained model ------------------#
# # ----------------discriminate m samples from the trained model ------------------------#
# # ----------------obtain latent space samples by invert G ------------------------------#
# idx = 50
# num1 = 47508
# num2 = 3720
# gs_samples = model.sample_trained_model(settings, idx, num1, Z_samples=None, C_samples=None)
#
# dis_t, logits_t = model.dis_trained_model(settings, idx, num2, T_samples=None, C_samples=None)
#
# # Zs, error_per_sample, heuristic_sigma = model.invert(settings, idx, samples, g_tolerance=None, e_tolerance=0.1,
# # n_iter=None, max_iter=10000, heuristic_sigma=None, C_samples=None)
#
# np.save('./experiments/plots/parameters/gs_sample.npy', gs_samples)
# np.save('./experiments/plots/parameters/dis_t.npy', dis_t)
trace.flush()
plotting.plot_trace(identifier, xmax=num_epochs, dp=dp)
model.dump_parameters(identifier + '_' + str(epoch), sess)
## after-the-fact evaluation
# n_test = vali.shape[0] # using validation set for now TODO
# n_batches_for_test = floor(n_test/batch_size)
# n_test_eval = n_batches_for_test*batch_size
# test_sample = np.empty(shape=(n_test_eval, seq_length, num_signals))
# test_Z = model.sample_Z(n_test_eval, seq_length, latent_dim, use_time)
# for i in range(n_batches_for_test):
# test_sample[i*batch_size:(i+1)*batch_size, :, :] = sess.run(G_sample, feed_dict={Z: test_Z[i*batch_size:(i+1)*batch_size]})
# test_sample = np.float32(test_sample)
# test_real = np.float32(vali[np.random.choice(n_test, n_test_eval, replace=False), :, :])
## we can only get samples in the size of the batch...
# heuristic_sigma = median_pairwise_distance(test_real, test_sample)
# test_mmd2, that = sess.run(mix_rbf_mmd2_and_ratio(test_real, test_sample, sigmas=heuristic_sigma, biased=False))
##print(test_mmd2, that)