-
Notifications
You must be signed in to change notification settings - Fork 38
/
boxinst_r50_fpn_3x_voc.py
159 lines (153 loc) · 4.7 KB
/
boxinst_r50_fpn_3x_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
_base_ = [
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='CondInst',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
zero_init_residual=False,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_output', # use P5
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='CondInstBoxHead',
num_classes=20,
in_channels=256,
center_sampling=True,
center_sample_radius=1.5,
norm_on_bbox=True,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
mask_branch=dict(
type='CondInstMaskBranch',
in_channels=256,
in_indices=[0, 1, 2],
strides=[8, 16, 32],
branch_convs=4,
branch_channels=128,
branch_out_channels=16),
mask_head=dict(
type='CondInstMaskHead',
in_channels=16,
in_stride=8,
out_stride=4,
dynamic_convs=3,
dynamic_channels=8,
disable_rel_coors=False,
bbox_head_channels=256,
sizes_of_interest=[64, 128, 256, 512, 1024],
max_proposals=-1,
topk_per_img=64,
boxinst_enabled=True,
bottom_pixels_removed=10,
pairwise_size=3,
pairwise_dilation=2,
pairwise_color_thresh=0.3,
pairwise_warmup=10000),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=2000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=2000,
output_segm=False))
dataset_type = 'PascalVOCDataset'
data_root = '/data/VOC/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=False),
dict(type='Resize',
img_scale=[(1333, 800), (1333, 768), (1333, 736),
(1333, 704), (1333, 672), (1333, 640)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/voc_2012_train.json',
img_prefix=data_root + 'train/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/voc_2012_val.json',
img_prefix=data_root + 'val/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/voc_2012_val.json',
img_prefix=data_root + 'val/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[27, 33])
runner = dict(type='EpochBasedRunner', max_epochs=36)
evaluation = dict(interval=1, metric=['bbox', 'segm'])
checkpoint_config = dict(interval=1)
work_dir = './work_dirs/boxinst_voc_3x'