-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
268 lines (233 loc) · 8.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
from prettytable import PrettyTable
import distutils.util
import numpy as np
import six
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(six.iteritems(vars(args))):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def summary(main_prog):
'''
It can summary model's PARAMS, FLOPs until now.
It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
Args:
main_prog: main program
Returns:
print summary on terminal
'''
collected_ops_list = []
is_quantize = False
for one_b in main_prog.blocks:
block_vars = one_b.vars
for one_op in one_b.ops:
if str(one_op.type).find('quantize') > -1:
is_quantize = True
op_info = OrderedDict()
spf_res = _summary_model(block_vars, one_op)
if spf_res is None:
continue
# TODO: get the operator name
op_info['type'] = one_op.type
op_info['input_shape'] = spf_res[0][1:]
op_info['out_shape'] = spf_res[1][1:]
op_info['PARAMs'] = spf_res[2]
op_info['FLOPs'] = spf_res[3]
collected_ops_list.append(op_info)
summary_table, total = _format_summary(collected_ops_list)
_print_summary(summary_table, total)
return total, is_quantize
def _summary_model(block_vars, one_op):
'''
Compute operator's params and flops.
Args:
block_vars: all vars of one block
one_op: one operator to count
Returns:
in_data_shape: one operator's input data shape
out_data_shape: one operator's output data shape
params: one operator's PARAMs
flops: : one operator's FLOPs
'''
if one_op.type in ['conv2d', 'depthwise_conv2d']:
k_arg_shape = block_vars[one_op.input("Filter")[0]].shape
in_data_shape = block_vars[one_op.input("Input")[0]].shape
out_data_shape = block_vars[one_op.output("Output")[0]].shape
c_out, c_in, k_h, k_w = k_arg_shape
_, c_out_, h_out, w_out = out_data_shape
assert c_out == c_out_, 'shape error!'
k_groups = one_op.attr("groups")
kernel_ops = k_h * k_w * (c_in / k_groups)
bias_ops = 0 if one_op.input("Bias") == [] else 1
params = c_out * (kernel_ops + bias_ops)
flops = h_out * w_out * c_out * (kernel_ops + bias_ops)
# base nvidia paper, include mul and add
flops = 2 * flops
# var_name = block_vars[one_op.input("Filter")[0]].name
# if var_name.endswith('.int8'):
# flops /= 2.0
elif one_op.type == 'pool2d':
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
_, c_out, h_out, w_out = out_data_shape
k_size = one_op.attr("ksize")
params = 0
flops = h_out * w_out * c_out * (k_size[0] * k_size[1])
elif one_op.type == 'mul':
k_arg_shape = block_vars[one_op.input("Y")[0]].shape
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
# TODO: fc has mul ops
# add attr to mul op, tell us whether it belongs to 'fc'
# this's not the best way
if 'fc' not in one_op.output("Out")[0]:
return None
k_in, k_out = k_arg_shape
# bias in sum op
params = k_in * k_out + 1
flops = k_in * k_out
# var_name = block_vars[one_op.input("Y")[0]].name
# if var_name.endswith('.int8'):
# flops /= 2.0
elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
params = 0
if one_op.type == 'prelu':
params = 1
flops = 1
for one_dim in in_data_shape[1:]:
flops *= one_dim
elif one_op.type == 'batch_norm':
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Y")[0]].shape
_, c_in, h_out, w_out = in_data_shape
# gamma, beta
params = c_in * 2
# compute mean and std
flops = h_out * w_out * c_in * 2
else:
return None
return in_data_shape, out_data_shape, params, flops
def _format_summary(collected_ops_list):
'''
Format summary report.
Args:
collected_ops_list: the collected operator with summary
Returns:
summary_table: summary report format
total: sum param and flops
'''
summary_table = PrettyTable(
["No.", "TYPE", "INPUT", "OUTPUT", "PARAMs", "FLOPs"])
summary_table.align = 'r'
total = {}
total_params = []
total_flops = []
for i, one_op in enumerate(collected_ops_list):
# notice the order
table_row = [
i,
one_op['type'],
one_op['input_shape'],
one_op['out_shape'],
int(one_op['PARAMs']),
int(one_op['FLOPs']),
]
summary_table.add_row(table_row)
total_params.append(int(one_op['PARAMs']))
total_flops.append(int(one_op['FLOPs']))
total['params'] = total_params
total['flops'] = total_flops
return summary_table, total
def _print_summary(summary_table, total):
'''
Print all the summary on terminal.
Args:
summary_table: summary report format
total: sum param and flops
'''
parmas = total['params']
flops = total['flops']
print(summary_table)
print('Total PARAMs: {}({:.4f}M)'.format(
sum(parmas), sum(parmas) / (10 ** 6)))
print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))
print(
"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
)
def get_batch_dt_res(nmsed_out_v, data, contiguous_category_id_to_json_id, batch_size):
dts_res = []
lod = nmsed_out_v[0].lod()[0]
nmsed_out_v = np.array(nmsed_out_v[0])
real_batch_size = min(batch_size, len(data))
assert (len(lod) == real_batch_size + 1), \
"Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})".format(len(lod), batch_size)
k = 0
for i in range(real_batch_size):
dt_num_this_img = lod[i + 1] - lod[i]
image_id = int(data[i][4][0])
image_width = int(data[i][4][1])
image_height = int(data[i][4][2])
for j in range(dt_num_this_img):
dt = nmsed_out_v[k]
k = k + 1
category_id, score, xmin, ymin, xmax, ymax = dt.tolist()
xmin = max(min(xmin, 1.0), 0.0) * image_width
ymin = max(min(ymin, 1.0), 0.0) * image_height
xmax = max(min(xmax, 1.0), 0.0) * image_width
ymax = max(min(ymax, 1.0), 0.0) * image_height
w = xmax - xmin
h = ymax - ymin
bbox = [xmin, ymin, w, h]
dt_res = {
'image_id': image_id,
'category_id': contiguous_category_id_to_json_id[category_id],
'bbox': bbox,
'score': score
}
dts_res.append(dt_res)
return dts_res