diff --git a/CHANGELOG.md b/CHANGELOG.md index eb1e945ef2..a6e33e1128 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -38,6 +38,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ### Fixed +- Fixed a bug where grayscale images were not properly converted to RGB when loaded. ([#1394](https://github.com/PyTorchLightning/lightning-flash/pull/1394)) + - Fixed a bug where size of mask for instance segmentation doesn't match to size of original image. ([#1353](https://github.com/PyTorchLightning/lightning-flash/pull/1353)) - Fixed image classification data `show_train_batch` for subplots with rows > 1. ([#1339](https://github.com/PyTorchLightning/lightning-flash/pull/1315)) diff --git a/flash/core/data/utilities/loading.py b/flash/core/data/utilities/loading.py index b0bc0180e0..d42a007287 100644 --- a/flash/core/data/utilities/loading.py +++ b/flash/core/data/utilities/loading.py @@ -60,12 +60,11 @@ TSV_EXTENSIONS = (".tsv",) -def _load_image_from_image(file, drop_alpha: bool = True): +def _load_image_from_image(file): img = Image.open(file) img.load() - if img.mode == "RGBA" and drop_alpha: - img = img.convert("RGB") + img = img.convert("RGB") return img @@ -74,7 +73,7 @@ def _load_image_from_numpy(file): def _load_spectrogram_from_image(file): - img = _load_image_from_image(file, drop_alpha=False) + img = _load_image_from_image(file) return np.array(img).astype("float32") diff --git a/flash_examples/image_embedder.py b/flash_examples/image_embedder.py index e295a2f91a..c30c718a53 100644 --- a/flash_examples/image_embedder.py +++ b/flash_examples/image_embedder.py @@ -21,7 +21,7 @@ # 1. Download the data and prepare the datamodule datamodule = ImageClassificationData.from_datasets( train_dataset=CIFAR10(".", download=True), - batch_size=4, + batch_size=8, ) # 2. Build the task @@ -49,7 +49,7 @@ "data/hymenoptera_data/predict/153783656_85f9c3ac70.jpg", "data/hymenoptera_data/predict/2039585088_c6f47c592e.jpg", ], - batch_size=3, + batch_size=2, ) embeddings = trainer.predict(embedder, datamodule=datamodule) diff --git a/flash_examples/style_transfer.py b/flash_examples/style_transfer.py index a36d287f1b..066503f1f2 100644 --- a/flash_examples/style_transfer.py +++ b/flash_examples/style_transfer.py @@ -28,7 +28,7 @@ model = StyleTransfer(os.path.join(flash.ASSETS_ROOT, "starry_night.jpg")) # 3. Create the trainer and train the model -trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count()) +trainer = flash.Trainer(max_epochs=1, gpus=torch.cuda.device_count()) trainer.fit(model, datamodule=datamodule) # 4. Apply style transfer to a few images! diff --git a/tests/core/data/utilities/test_classification.py b/tests/core/data/utilities/test_classification.py index 7001a80242..9cdc81fe3f 100644 --- a/tests/core/data/utilities/test_classification.py +++ b/tests/core/data/utilities/test_classification.py @@ -143,10 +143,10 @@ def test_speed(case): formatter = get_target_formatter(targets) end = time.perf_counter() - assert (end - start) / len(targets) < 1e-5 # 0.01ms per target + assert (end - start) / len(targets) < 1e-4 # 0.1ms per target start = time.perf_counter() _ = [formatter(t) for t in targets] end = time.perf_counter() - assert (end - start) / len(targets) < 1e-5 # 0.01ms per target + assert (end - start) / len(targets) < 1e-4 # 0.1ms per target diff --git a/tests/examples/utils.py b/tests/examples/utils.py index cb923db1ce..e341114711 100644 --- a/tests/examples/utils.py +++ b/tests/examples/utils.py @@ -19,7 +19,7 @@ def call_script( filepath: str, args: Optional[List[str]] = None, - timeout: Optional[int] = 60 * 10, + timeout: Optional[int] = 60 * 20, # (20 minutes) ) -> Tuple[int, str, str]: with open(filepath) as original: data = original.readlines()