-
Notifications
You must be signed in to change notification settings - Fork 0
/
audio_taco.py
360 lines (284 loc) · 13.2 KB
/
audio_taco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import librosa
import librosa.filters
import numpy as np
import tensorflow as tf
from scipy import signal
from scipy.io import wavfile
import hparam as hparams
# from hparam import *
# from usr.pghi import PGHI
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr, inv_preemphasize, k):
# wav = inv_preemphasis(wav, k, inv_preemphasize)
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
wavfile.write(path, sr, wav.astype(np.int16))
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
# From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
def start_and_end_indices(quantized, silence_threshold=2):
for start in range(quantized.size):
if abs(quantized[start] - 127) > silence_threshold:
break
for end in range(quantized.size - 1, 1, -1):
if abs(quantized[end] - 127) > silence_threshold:
break
assert abs(quantized[start] - 127) > silence_threshold
assert abs(quantized[end] - 127) > silence_threshold
return start, end
def trim_silence(wav, hparams):
'''Trim leading and trailing silence
Useful for M-AILABS dataset if we choose to trim the extra 0.5 silence at beginning and end.
'''
#Thanks @begeekmyfriend and @lautjy for pointing out the params contradiction. These params are separate and tunable per dataset.
return librosa.effects.trim(wav, top_db= hparams.trim_top_db, frame_length=hparams.trim_fft_size, hop_length=hparams.trim_hop_size)[0]
def get_hop_size(hparams):
hop_size = hparams.hop_size
if hop_size is None:
assert hparams.frame_shift_ms is not None
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.audio_sample_rate)
return hop_size
def linearspectrogram(wav, hparams):
# D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
D = _stft(wav, hparams)
S = _amp_to_db(np.abs(D)**hparams.magnitude_power, hparams) - hparams.ref_level_db
if hparams.signal_normalization:
return _normalize(S, hparams)
return S
def melspectrogram(wav, hparams):
# D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
D = _stft(wav, hparams)
S = _amp_to_db(_linear_to_mel(np.abs(D)**hparams.magnitude_power, hparams), hparams) - hparams.ref_level_db
if hparams.signal_normalization:
return _normalize(S, hparams)
return S
def inv_linear_spectrogram(linear_spectrogram, hparams):
'''Converts linear spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(linear_spectrogram, hparams)
else:
D = linear_spectrogram
S = _db_to_amp(D + hparams.ref_level_db)**(1/hparams.magnitude_power) #Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
def inv_mel_spectrogram(mel_spectrogram, hparams):
'''Converts mel spectrogram to waveform using librosa'''
if hparams.signal_normalization:
D = _denormalize(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db)**(1/hparams.magnitude_power), hparams) # Convert back to linear
if hparams.use_lws:
processor = _lws_processor(hparams)
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
else:
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
###########################################################################################
# tensorflow Griffin-Lim
# Thanks to @begeekmyfriend: https://github.com/begeekmyfriend/Tacotron-2/blob/mandarin-new/datasets/audio.py
def inv_linear_spectrogram_tensorflow(spectrogram, hparams):
'''Builds computational graph to convert spectrogram to waveform using TensorFlow.
Unlike inv_spectrogram, this does NOT invert the preemphasis. The caller should call
inv_preemphasis on the output after running the graph.
'''
if hparams.signal_normalization:
D = _denormalize_tensorflow(spectrogram, hparams)
else:
D = linear_spectrogram
S = tf.pow(_db_to_amp_tensorflow(D + hparams.ref_level_db), (1/hparams.magnitude_power))
return _griffin_lim_tensorflow(tf.pow(S, hparams.power), hparams)
def inv_mel_spectrogram_tensorflow(mel_spectrogram, hparams):
'''Builds computational graph to convert mel spectrogram to waveform using TensorFlow.
Unlike inv_mel_spectrogram, this does NOT invert the preemphasis. The caller should call
inv_preemphasis on the output after running the graph.
'''
if hparams.signal_normalization:
D = _denormalize_tensorflow(mel_spectrogram, hparams)
else:
D = mel_spectrogram
S = tf.pow(_db_to_amp_tensorflow(D + hparams.ref_level_db), (1/hparams.magnitude_power))
S = _mel_to_linear_tensorflow(S, hparams) # Convert back to linear
return _griffin_lim_tensorflow(tf.pow(S, hparams.power), hparams)
###########################################################################################
def _lws_processor(hparams):
import lws
return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
def _griffin_lim(S, hparams):
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles, hparams)
for i in range(hparams.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y, hparams)))
y = _istft(S_complex * angles, hparams)
return y
'''
def _griffin_lim(S, hparams):
S = S.T
p = PGHI(M=1024, redundancy=4, show_plots=False, Fs=16000, verbose=False)
phase_estimated_frames = p.magnitude_to_phase_estimate(S)
signal_out = p.magphase_frames_to_signal(S, phase_estimated_frames)
return signal_out
'''
def _griffin_lim_tensorflow(S, hparams):
'''TensorFlow implementation of Griffin-Lim
Based on https://github.com/Kyubyong/tensorflow-exercises/blob/master/Audio_Processing.ipynb
'''
with tf.variable_scope('griffinlim'):
# TensorFlow's stft and istft operate on a batch of spectrograms; create batch of size 1
S = tf.expand_dims(S, 0)
S_complex = tf.identity(tf.cast(S, dtype=tf.complex64))
y = tf.contrib.signal.inverse_stft(S_complex, hparams.win_size, get_hop_size(hparams), hparams.n_fft)
for i in range(hparams.griffin_lim_iters):
est = tf.contrib.signal.stft(y, hparams.win_size, get_hop_size(hparams), hparams.n_fft)
angles = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64)
y = tf.contrib.signal.inverse_stft(S_complex * angles, hparams.win_size, get_hop_size(hparams), hparams.n_fft)
return tf.squeeze(y, 0)
def _stft(y, hparams):
if hparams.use_lws:
return _lws_processor(hparams).stft(y).T
else:
return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size, pad_mode='constant')
def _istft(y, hparams):
return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
pad = (fsize - fshift)
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding
"""
M = num_frames(len(x), fsize, fshift)
pad = (fsize - fshift)
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
#Librosa correct padding
def librosa_pad_lr(x, fsize, fshift, pad_sides=1):
'''compute right padding (final frame) or both sides padding (first and final frames)
'''
assert pad_sides in (1, 2)
# return int(fsize // 2)
pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0]
if pad_sides == 1:
return 0, pad
else:
return pad // 2, pad // 2 + pad % 2
# Conversions
_mel_basis = None
_inv_mel_basis = None
def _linear_to_mel(spectogram, hparams):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis(hparams)
return np.dot(_mel_basis, spectogram)
def _mel_to_linear(mel_spectrogram, hparams):
global _inv_mel_basis
if _inv_mel_basis is None:
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
def _mel_to_linear_tensorflow(mel_spectrogram, hparams):
global _inv_mel_basis
if _inv_mel_basis is None:
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
return tf.transpose(tf.maximum(1e-10, tf.matmul(tf.cast(_inv_mel_basis, tf.float32), tf.transpose(mel_spectrogram, [1, 0]))), [1, 0])
def _build_mel_basis(hparams):
assert hparams.fmax <= hparams.audio_sample_rate // 2
return librosa.filters.mel(hparams.audio_sample_rate, hparams.n_fft, n_mels=hparams.audio_num_mel_bins,
fmin=hparams.fmin, fmax=hparams.fmax)
def _amp_to_db(x, hparams):
min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _db_to_amp_tensorflow(x):
return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
def _normalize(S, hparams):
if hparams.allow_clipping_in_normalization:
if hparams.symmetric_mels:
return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value,
-hparams.max_abs_value, hparams.max_abs_value)
else:
return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value)
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
if hparams.symmetric_mels:
return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value
else:
return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db))
def _denormalize(D, hparams):
if hparams.allow_clipping_in_normalization:
if hparams.symmetric_mels:
return (((np.clip(D, -hparams.max_abs_value,
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
+ hparams.min_level_db)
else:
return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
if hparams.symmetric_mels:
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
else:
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
def _denormalize_tensorflow(D, hparams):
if hparams.allow_clipping_in_normalization:
if hparams.symmetric_mels:
return (((tf.clip_by_value(D, -hparams.max_abs_value,
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
+ hparams.min_level_db)
else:
return ((tf.clip_by_value(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
if hparams.symmetric_mels:
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
else:
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
import matplotlib.pyplot as plt
def plot_spec(spec, path, info=None):
fig = plt.figure(figsize=(14, 7))
heatmap = plt.pcolor(spec)
xlabel = 'Time'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Mel filterbank')
plt.tight_layout()
plt.savefig(path, format='png')
plt.close(fig)
def low_cut_filter(x, fs, cutoff=70):
'''APPLY LOW CUT FILTER.
https://github.com/kan-bayashi/PytorchWaveNetVocoder
Args:
| x (ndarray): Waveform sequence.
| fs (int): Sampling frequency.
| cutoff (float): Cutoff frequency of low cut filter.
Return:
| ndarray: Low cut filtered waveform sequence.
'''
nyquist = fs // 2
norm_cutoff = cutoff / nyquist
from scipy.signal import firwin, lfilter
# low cut filter
fil = firwin(255, norm_cutoff, pass_zero=False)
lcf_x = lfilter(fil, 1, x)
return lcf_x