-
Notifications
You must be signed in to change notification settings - Fork 1
/
esdt.rs
740 lines (633 loc) · 23.5 KB
/
esdt.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
//! Rust port of the ESDT ("Euclidean Subpixel Distance Transform") algorithm.
//!
//!
//! This algorithm was originally published as the [`@use-gpu/glyph`](https://www.npmjs.com/package/@use-gpu/glyph)
//! `npm` package, and was described in <https://acko.net/blog/subpixel-distance-transform/>.
use crate::img::{Bitmap, Image2d, NDCursor, NDCursorExt as _, Unorm8};
// HACK(eddyb) only exists to allow toggling precision for testing purposes.
#[cfg(sdfer_use_f64_instead_of_f32)]
type f32 = f64;
#[derive(Copy, Clone, Debug)]
pub struct Params {
pub pad: usize,
pub radius: f32,
pub cutoff: f32,
pub solidify: bool,
pub preprocess: bool,
// FIXME(eddyb) implement.
// pub postprocess: bool,
}
impl Default for Params {
fn default() -> Self {
Self {
pad: 4,
radius: 3.0,
cutoff: 0.25,
solidify: true,
preprocess: false,
// FIXME(eddyb) implement.
// postprocess: false,
}
}
}
/// Opaque `struct` allowing buffer reuse between SDF computations, instead of
/// reallocating all the buffers every time.
#[derive(Default)]
pub struct ReusableBuffers(ReusableBuffers2d, ReusableBuffers1d);
// Convert grayscale glyph to SDF
pub fn glyph_to_sdf(
glyph: &mut Image2d<Unorm8, impl AsMut<[Unorm8]> + AsRef<[Unorm8]>>,
params: Params,
reuse_bufs: Option<ReusableBuffers>,
) -> (Image2d<Unorm8>, ReusableBuffers) {
if params.solidify {
solidify_alpha(glyph.reborrow_mut());
}
glyph_to_esdt(glyph.reborrow_mut(), params, reuse_bufs)
}
// Solidify semi-transparent areas
fn solidify_alpha(mut glyph: Image2d<Unorm8, &mut [Unorm8]>) {
let (w, h) = (glyph.width(), glyph.height());
let mut mask: Image2d<u8> = Image2d::new(w, h);
let get_data = |x: isize, y: isize| {
if x >= 0 && (x as usize) < w && y >= 0 && (y as usize) < h {
glyph[(x as usize, y as usize)]
} else {
Unorm8::MIN
}
};
let mut masked = 0;
// Mask pixels whose alpha matches their 4 adjacent neighbors (within 16 steps)
// and who don't have black or white neighbors.
for y in 0..(h as isize) {
for x in 0..(w as isize) {
let a = get_data(x, y);
// FIXME(eddyb) audit all comparisons with `254` and try removing them.
if a == Unorm8::MIN || a >= Unorm8::from_bits(254) {
continue;
}
let l = get_data(x - 1, y);
let r = get_data(x + 1, y);
let t = get_data(x, y - 1);
let b = get_data(x, y + 1);
let (min, max) = [a, l, r, t, b]
.into_iter()
.map(|x| (x, x))
.reduce(|(a_min, a_max), (b_min, b_max)| (a_min.min(b_min), a_max.max(b_max)))
.unwrap();
let [a, min, max] = [a, min, max].map(Unorm8::to_bits);
// FIXME(eddyb) audit all comparisons with `254` and try removing them.
if (max - min) < 16 && min > 0 && max < 254 {
// NOTE(eddyb) `min > 0` guarantees all neighbors are in-bounds.
let (x, y) = (x as usize, y as usize);
// Spread to 4 neighbors with max
mask[(x - 1, y)] = mask[(x - 1, y)].max(a);
mask[(x, y - 1)] = mask[(x, y - 1)].max(a);
mask[(x, y)] = a;
mask[(x + 1, y)] = mask[(x + 1, y)].max(a);
mask[(x, y + 1)] = mask[(x, y + 1)].max(a);
masked += 1;
}
}
}
if masked == 0 {
return;
}
let get_mask = |x: isize, y: isize| {
if x >= 0 && (x as usize) < w && y >= 0 && (y as usize) < h {
mask[(x as usize, y as usize)]
} else {
0
}
};
// Sample 3x3 area for alpha normalization factor
for y in 0..(h as isize) {
for x in 0..(w as isize) {
let a = &mut glyph[(x as usize, y as usize)];
// FIXME(eddyb) audit all comparisons with `254` and try removing them.
if *a == Unorm8::MIN || *a >= Unorm8::from_bits(254) {
continue;
}
let c = get_mask(x, y);
let l = get_mask(x - 1, y);
let r = get_mask(x + 1, y);
let t = get_mask(x, y - 1);
let b = get_mask(x, y + 1);
let tl = get_mask(x - 1, y - 1);
let tr = get_mask(x + 1, y - 1);
let bl = get_mask(x - 1, y + 1);
let br = get_mask(x + 1, y + 1);
if let Some(m) = [c, l, r, t, b, tl, tr, bl, br]
.into_iter()
.find(|&x| x != 0)
{
*a = Unorm8::from_bits((a.to_bits() as f32 / m as f32 * 255.0) as u8);
}
}
}
}
// Convert grayscale or color glyph to SDF using subpixel distance transform
fn glyph_to_esdt(
mut glyph: Image2d<Unorm8, &mut [Unorm8]>,
params: Params,
reuse_bufs: Option<ReusableBuffers>,
) -> (Image2d<Unorm8>, ReusableBuffers) {
// FIXME(eddyb) use `Params` itself directly in more places.
let Params {
pad,
radius,
cutoff,
solidify: _,
preprocess,
} = params;
let wp = glyph.width() + pad * 2;
let hp = glyph.height() + pad * 2;
let mut state = State::from_glyph(glyph.reborrow_mut(), params, reuse_bufs);
state.esdt_outer_and_inner(wp, hp);
// FIXME(eddyb) implement.
// if postprocess { state.relax_subpixel_offsets(glyph, pad); }
let mut sdf = Image2d::from_fn(wp, hp, |x, y| {
let i = y * wp + x;
let ReusableBuffers2d { xo, yo, xi, yi, .. } = &state.bufs_2d;
let outer = ((xo[i].powi(2) + yo[i].powi(2)).sqrt() - 0.5).max(0.0);
let inner = ((xi[i].powi(2) + yi[i].powi(2)).sqrt() - 0.5).max(0.0);
let d = if outer >= inner { outer } else { -inner };
Unorm8::encode(1.0 - (d / radius + cutoff))
});
if !preprocess {
paint_into_distance_field(&mut sdf, glyph.reborrow(), params);
}
(sdf, ReusableBuffers(state.bufs_2d, state.reuse_bufs_1d))
}
// Helpers
fn is_black(x: f32) -> bool {
x == 0.0
}
fn is_white(x: f32) -> bool {
x == 1.0
}
fn is_solid(x: f32) -> bool {
x == 0.0 || x == 1.0
}
// Paint original alpha channel into final SDF when gray
fn paint_into_distance_field(
sdf: &mut Image2d<Unorm8>,
glyph: Image2d<Unorm8, &[Unorm8]>,
params: Params,
) {
let Params {
pad,
radius,
cutoff,
..
} = params;
for y in 0..glyph.height() {
for x in 0..glyph.width() {
let a = glyph[(x, y)].decode();
if !is_solid(a) {
let d = 0.5 - a;
sdf[(x + pad, y + pad)] = Unorm8::encode(1.0 - (d / radius + cutoff));
}
}
}
}
/// 2D buffers, which get reused (see also `ReusableBuffers` itself).
#[derive(Default)]
struct ReusableBuffers2d {
// FIXME(eddyb) group `outer` with `{x,y}o`.
outer: Bitmap,
// FIXME(eddyb) group `inner` with `{x,y}i``.
inner: Bitmap,
xo: Vec<f32>,
yo: Vec<f32>,
xi: Vec<f32>,
yi: Vec<f32>,
}
struct State {
// FIXME(eddyb) do the grouping suggested in `ReusableBuffers2d`, to have
// `outer` and `inner` fields in here, to use instead of `ReusableBuffers2d`.
bufs_2d: ReusableBuffers2d,
reuse_bufs_1d: ReusableBuffers1d,
}
impl State {
fn from_glyph(
mut glyph: Image2d<Unorm8, &mut [Unorm8]>,
params: Params,
reuse_bufs: Option<ReusableBuffers>,
) -> Self {
let Params {
pad,
// FIXME(eddyb) should this still be taken as a separate `bool`?
preprocess: relax,
..
} = params;
let wp = glyph.width() + pad * 2;
let hp = glyph.height() + pad * 2;
let np = wp * hp;
let ReusableBuffers(bufs_2d, reuse_bufs_1d) = reuse_bufs.unwrap_or_default();
let mut state = Self {
bufs_2d,
reuse_bufs_1d,
};
let ReusableBuffers2d {
outer,
inner,
xo,
yo,
xi,
yi,
} = &mut state.bufs_2d;
outer.resize_and_fill_with(wp, hp, true);
inner.resize_and_fill_with(wp, hp, false);
for buf2d in [&mut *xo, yo, xi, yi] {
buf2d.clear();
buf2d.resize(np, 0.0);
}
for y in 0..glyph.height() {
for x in 0..glyph.width() {
let a = &mut glyph[(x, y)];
if *a == Unorm8::MIN {
continue;
}
// FIXME(eddyb) audit all comparisons with `254` and try removing them,
// especially this step that modifies the `glyph` itself.
if *a >= Unorm8::from_bits(254) {
// Fix for bad rasterizer rounding
*a = Unorm8::MAX;
outer.at(x + pad, y + pad).set(false);
inner.at(x + pad, y + pad).set(true);
} else {
outer.at(x + pad, y + pad).set(false);
inner.at(x + pad, y + pad).set(false);
}
}
}
//
// Generate subpixel offsets for all border pixels
//
let get_data = |x: isize, y: isize| {
if x >= 0 && (x as usize) < glyph.width() && y >= 0 && (y as usize) < glyph.height() {
glyph[(x as usize, y as usize)].decode()
} else {
0.0
}
};
// Make vector from pixel center to nearest boundary
for y in 0..(glyph.height() as isize) {
for x in 0..(glyph.width() as isize) {
let c = get_data(x, y);
// NOTE(eddyb) `j - 1` (X-) / `j - wp` (Y-) positive (`pad >= 1`).
let j = ((y as usize) + pad) * wp + (x as usize) + pad;
if !is_solid(c) {
let dc = c - 0.5;
// NOTE(eddyb) l(eft) r(ight) t(op) b(ottom)
let l = get_data(x - 1, y);
let r = get_data(x + 1, y);
let t = get_data(x, y - 1);
let b = get_data(x, y + 1);
let tl = get_data(x - 1, y - 1);
let tr = get_data(x + 1, y - 1);
let bl = get_data(x - 1, y + 1);
let br = get_data(x + 1, y + 1);
let ll = (tl + l * 2.0 + bl) / 4.0;
let rr = (tr + r * 2.0 + br) / 4.0;
let tt = (tl + t * 2.0 + tr) / 4.0;
let bb = (bl + b * 2.0 + br) / 4.0;
let (min, max) = [l, r, t, b, tl, tr, bl, br]
.into_iter()
.map(|x| (x, x))
.reduce(|(a_min, a_max), (b_min, b_max)| {
(a_min.min(b_min), a_max.max(b_max))
})
.unwrap();
if min > 0.0 {
// Interior creases
inner.at(x as usize + pad, y as usize + pad).set(true);
continue;
}
if max < 1.0 {
// Exterior creases
outer.at(x as usize + pad, y as usize + pad).set(true);
continue;
}
let mut dx = rr - ll;
let mut dy = bb - tt;
let dl = 1.0 / (dx.powi(2) + dy.powi(2)).sqrt();
dx *= dl;
dy *= dl;
xo[j] = -dc * dx;
yo[j] = -dc * dy;
} else if is_white(c) {
// NOTE(eddyb) l(eft) r(ight) t(op) b(ottom)
let l = get_data(x - 1, y);
let r = get_data(x + 1, y);
let t = get_data(x, y - 1);
let b = get_data(x, y + 1);
if is_black(l) {
xo[j - 1] = 0.4999;
outer.at(x as usize + pad - 1, y as usize + pad).set(false);
inner.at(x as usize + pad - 1, y as usize + pad).set(false);
}
if is_black(r) {
xo[j + 1] = -0.4999;
outer.at(x as usize + pad + 1, y as usize + pad).set(false);
inner.at(x as usize + pad + 1, y as usize + pad).set(false);
}
if is_black(t) {
yo[j - wp] = 0.4999;
outer.at(x as usize + pad, y as usize + pad - 1).set(false);
inner.at(x as usize + pad, y as usize + pad - 1).set(false);
}
if is_black(b) {
yo[j + wp] = -0.4999;
outer.at(x as usize + pad, y as usize + pad + 1).set(false);
inner.at(x as usize + pad, y as usize + pad + 1).set(false);
}
}
}
}
// Blend neighboring offsets but preserve normal direction
// Uses xo as input, xi as output
// Improves quality slightly, but slows things down.
if relax {
let check_cross = |nx, ny, dc, dl, dr, dxl, dyl, dxr, dyr| {
((dxl * nx + dyl * ny) * (dc * dl) > 0.0)
&& ((dxr * nx + dyr * ny) * (dc * dr) > 0.0)
&& ((dxl * dxr + dyl * dyr) * (dl * dr) > 0.0)
};
for y in 0..(glyph.height() as isize) {
for x in 0..(glyph.width() as isize) {
// NOTE(eddyb) `j - 1` (X-) / `j - wp` (Y-) positive (`pad >= 1`).
let j = ((y as usize) + pad) * wp + (x as usize) + pad;
let nx = xo[j];
let ny = yo[j];
if nx == 0.0 && ny == 0.0 {
continue;
}
// NOTE(eddyb) c(enter) l(eft) r(ight) t(op) b(ottom)
let c = get_data(x, y);
let l = get_data(x - 1, y);
let r = get_data(x + 1, y);
let t = get_data(x, y - 1);
let b = get_data(x, y + 1);
let dxl = xo[j - 1];
let dxr = xo[j + 1];
let dxt = xo[j - wp];
let dxb = xo[j + wp];
let dyl = yo[j - 1];
let dyr = yo[j + 1];
let dyt = yo[j - wp];
let dyb = yo[j + wp];
let mut dx = nx;
let mut dy = ny;
let mut dw = 1.0;
let dc = c - 0.5;
let dl = l - 0.5;
let dr = r - 0.5;
let dt = t - 0.5;
let db = b - 0.5;
if !is_solid(l) && !is_solid(r) {
if check_cross(nx, ny, dc, dl, dr, dxl, dyl, dxr, dyr) {
dx += (dxl + dxr) / 2.0;
dy += (dyl + dyr) / 2.0;
dw += 1.0;
}
}
if !is_solid(t) && !is_solid(b) {
if check_cross(nx, ny, dc, dt, db, dxt, dyt, dxb, dyb) {
dx += (dxt + dxb) / 2.0;
dy += (dyt + dyb) / 2.0;
dw += 1.0;
}
}
if !is_solid(l) && !is_solid(t) {
if check_cross(nx, ny, dc, dl, dt, dxl, dyl, dxt, dyt) {
dx += (dxl + dxt - 1.0) / 2.0;
dy += (dyl + dyt - 1.0) / 2.0;
dw += 1.0;
}
}
if !is_solid(r) && !is_solid(t) {
if check_cross(nx, ny, dc, dr, dt, dxr, dyr, dxt, dyt) {
dx += (dxr + dxt + 1.0) / 2.0;
dy += (dyr + dyt - 1.0) / 2.0;
dw += 1.0;
}
}
if !is_solid(l) && !is_solid(b) {
if check_cross(nx, ny, dc, dl, db, dxl, dyl, dxb, dyb) {
dx += (dxl + dxb - 1.0) / 2.0;
dy += (dyl + dyb + 1.0) / 2.0;
dw += 1.0;
}
}
if !is_solid(r) && !is_solid(b) {
if check_cross(nx, ny, dc, dr, db, dxr, dyr, dxb, dyb) {
dx += (dxr + dxb + 1.0) / 2.0;
dy += (dyr + dyb + 1.0) / 2.0;
dw += 1.0;
}
}
let nn = (nx * nx + ny * ny).sqrt();
let ll = (dx * nx + dy * ny) / nn;
dx = nx * ll / dw / nn;
dy = ny * ll / dw / nn;
xi[j] = dx;
yi[j] = dy;
}
}
}
// Produce zero points for positive and negative DF, at +0.5 / -0.5.
// Splits xs into xo/xi
for y in 0..(glyph.height() as isize) {
for x in 0..(glyph.width() as isize) {
// NOTE(eddyb) `j - 1` (X-) / `j - wp` (Y-) positive (`pad >= 1`).
let j = ((y as usize) + pad) * wp + (x as usize) + pad;
// NOTE(eddyb) `if relax` above changed `xs`/`ys` in the original.
let (nx, ny) = if relax {
(xi[j], yi[j])
} else {
(xo[j], yo[j])
};
if nx == 0.0 && ny == 0.0 {
continue;
}
let nn = (nx.powi(2) + ny.powi(2)).sqrt();
let sx = if ((nx / nn).abs() - 0.5) > 0.0 {
nx.signum() as isize
} else {
0
};
let sy = if ((ny / nn).abs() - 0.5) > 0.0 {
ny.signum() as isize
} else {
0
};
let c = get_data(x, y);
let d = get_data(x + sx, y + sy);
// FIXME(eddyb) is this inefficient? (was `Math.sign(d - c)`)
let s = (d - c).total_cmp(&0.0) as i8 as f32;
let dlo = (nn + 0.4999 * s) / nn;
let dli = (nn - 0.4999 * s) / nn;
xo[j] = nx * dlo;
yo[j] = ny * dlo;
xi[j] = nx * dli;
yi[j] = ny * dli;
}
}
state
}
fn esdt_outer_and_inner(&mut self, w: usize, h: usize) {
{
let Self {
bufs_2d:
ReusableBuffers2d {
outer,
inner,
xo,
yo,
xi,
yi,
},
reuse_bufs_1d,
} = self;
esdt(outer, xo, yo, w, h, reuse_bufs_1d);
esdt(inner, xi, yi, w, h, reuse_bufs_1d);
}
}
}
// 2D subpixel distance transform by unconed
// extended from Felzenszwalb & Huttenlocher https://cs.brown.edu/~pff/papers/dt-final.pdf
fn esdt(
mask: &mut Bitmap,
xs: &mut [f32],
ys: &mut [f32],
w: usize,
h: usize,
reuse_bufs_1d: &mut ReusableBuffers1d,
) {
reuse_bufs_1d.critical_minima.clear();
reuse_bufs_1d.critical_minima.reserve(w.max(h));
let mut xs = Image2d::from_storage(w, h, xs);
let mut ys = Image2d::from_storage(w, h, ys);
for x in 0..w {
let mut mask_xy_cursor = mask
.cursor_at(0, 0)
.zip(
// FIXME(eddyb) combine `xs` and `ys` into the same `Image2d`.
ys.cursor_at(0, 0).zip(xs.cursor_at(0, 0)),
)
.map_abs_and_rel(move |y| (x, y), |dy| (0, dy));
mask_xy_cursor.reset(0);
esdt1d(mask_xy_cursor, h, reuse_bufs_1d)
}
for y in 0..h {
let mut mask_xy_cursor = mask
.cursor_at(0, 0)
.zip(
// FIXME(eddyb) combine `xs` and `ys` into the same `Image2d`.
xs.cursor_at(0, 0).zip(ys.cursor_at(0, 0)),
)
.map_abs_and_rel(move |x| (x, y), |dx| (dx, 0));
mask_xy_cursor.reset(0);
esdt1d(mask_xy_cursor, w, reuse_bufs_1d)
}
}
/// 1D buffers (for `esdt1d`), which get reused between calls.
//
// FIXME(eddyb) the name is outdated now that there's only one buffer.
#[derive(Default)]
struct ReusableBuffers1d {
critical_minima: Vec<CriticalMinimum>,
}
// FIXME(eddyb) clean up the names after all the refactors.
struct CriticalMinimum {
// FIXME(eddyb) this is really just a position, since it's not used to
// index anything indirectly anymore, but rather indicates the original `q`,
// and is used to compare against it in the second iteration of `esdt1d`.
v: usize, // Array index
z: f32, // Voronoi threshold
f: f32, // Squared distance
b: f32, // Subpixel offset parallel
t: f32, // Subpixel offset perpendicular
}
// 1D subpixel distance transform
fn esdt1d(
mut mask_xy_cursor: impl for<'a> NDCursor<
'a,
usize,
RefMut = (crate::img::BitmapEntry<'a>, (&'a mut f32, &'a mut f32)),
>,
// FIXME(eddyb) provide this through the cursor, maybe?
length: usize,
reuse_bufs_1d: &mut ReusableBuffers1d,
) {
// FIXME(eddyb) this is a pretty misleading name.
const INF: f32 = 1e10;
let cm = &mut reuse_bufs_1d.critical_minima;
cm.clear();
{
let (mask, (&mut dx, &mut dy)) = mask_xy_cursor.get_mut();
cm.push(CriticalMinimum {
v: 0,
z: -INF,
f: if mask.get() { INF } else { dy.powi(2) },
b: dx,
t: dy,
});
mask_xy_cursor.advance(1);
}
// Scan along array and build list of critical minima
for q in 1..length {
// Perpendicular
let (mask, (&mut dx, &mut dy)) = mask_xy_cursor.get_mut();
let fq = if mask.get() { INF } else { dy.powi(2) };
mask_xy_cursor.advance(1);
// Parallel
let qs = q as f32 + dx;
let q2 = qs.powi(2);
// Remove any minima eclipsed by this one
let mut s;
loop {
let r = &cm[cm.len() - 1];
s = (fq - r.f + q2 - r.b.powi(2)) / (qs - r.b) / 2.0;
if !(s <= r.z) {
break;
}
cm.pop();
if cm.len() == 0 {
break;
}
}
// Add to minima list
cm.push(CriticalMinimum {
v: q,
z: s,
f: fq,
b: qs,
t: dy,
});
}
mask_xy_cursor.reset(0);
// Resample array based on critical minima
{
let mut k = 0;
for q in 0..length {
// Skip eclipsed minima
while k + 1 < cm.len() && cm[k + 1].z < q as f32 {
k += 1;
}
let r = &cm[k];
// Distance from integer index to subpixel location of minimum
let rq = r.b - q as f32;
let (mut mask, (dx, dy)) = mask_xy_cursor.get_mut();
*dx = rq;
*dy = r.t;
// Mark cell as having propagated
if r.v != q {
mask.set(false);
}
mask_xy_cursor.advance(1);
}
}
}