-
Notifications
You must be signed in to change notification settings - Fork 38
/
model.py
87 lines (72 loc) · 3.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch.nn as nn
from layers import inverted_residual_sequence, conv2d_bn_relu6
class MobileNetV2(nn.Module):
def __init__(self, args):
super(MobileNetV2, self).__init__()
s1, s2 = 2, 2
if args.downsampling == 16:
s1, s2 = 2, 1
elif args.downsampling == 8:
s1, s2 = 1, 1
# Network is created here, then will be unpacked into nn.sequential
self.network_settings = [{'t': -1, 'c': 32, 'n': 1, 's': s1},
{'t': 1, 'c': 16, 'n': 1, 's': 1},
{'t': 6, 'c': 24, 'n': 2, 's': s2},
{'t': 6, 'c': 32, 'n': 3, 's': 2},
{'t': 6, 'c': 64, 'n': 4, 's': 2},
{'t': 6, 'c': 96, 'n': 3, 's': 1},
{'t': 6, 'c': 160, 'n': 3, 's': 2},
{'t': 6, 'c': 320, 'n': 1, 's': 1},
{'t': None, 'c': 1280, 'n': 1, 's': 1}]
self.num_classes = args.num_classes
###############################################################################################################
# Feature Extraction part
# Layer 0
self.network = [
conv2d_bn_relu6(args.num_channels,
int(self.network_settings[0]['c'] * args.width_multiplier),
args.kernel_size,
self.network_settings[0]['s'], args.dropout_prob)]
# Layers from 1 to 7
for i in range(1, 8):
self.network.extend(
inverted_residual_sequence(
int(self.network_settings[i - 1]['c'] * args.width_multiplier),
int(self.network_settings[i]['c'] * args.width_multiplier),
self.network_settings[i]['n'], self.network_settings[i]['t'],
args.kernel_size, self.network_settings[i]['s']))
# Last layer before flattening
self.network.append(
conv2d_bn_relu6(int(self.network_settings[7]['c'] * args.width_multiplier),
int(self.network_settings[8]['c'] * args.width_multiplier), 1,
self.network_settings[8]['s'],
args.dropout_prob))
###############################################################################################################
# Classification part
self.network.append(nn.Dropout2d(args.dropout_prob, inplace=True))
self.network.append(nn.AvgPool2d(
(args.img_height // args.downsampling, args.img_width // args.downsampling)))
self.network.append(nn.Dropout2d(args.dropout_prob, inplace=True))
self.network.append(
nn.Conv2d(int(self.network_settings[8]['c'] * args.width_multiplier), self.num_classes,
1, bias=True))
self.network = nn.Sequential(*self.network)
self.initialize()
def forward(self, x):
# Debugging mode
# for op in self.network:
# x = op(x)
# print(x.shape)
x = self.network(x)
x = x.view(-1, self.num_classes)
return x
def initialize(self):
"""Initializes the model parameters"""
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.xavier_normal(m.weight)
if m.bias is not None:
nn.init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant(m.weight, 1)
nn.init.constant(m.bias, 0)