forked from LowPowerLab/CurrentRanger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CurrentRanger_R3.ino
877 lines (798 loc) · 33.9 KB
/
CurrentRanger_R3.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
// CurrentRanger(TM) stock firmware
// https://lowpowerlab.com/CurrentRanger
// CurrentRanger is a *high-side* precision current meter featuring:
// - fast autoranging
// - uni/bi-directional modes (ie. DC/AC measurements)
// - ultra low burden voltage
// - 1mV per nA/uA/mA measurements with DMM/scope
// - OLED standalone readings
// - serial data logging option via 3.3v/RX/TX header or USB (must use isolation, read guide!)
// - full digital control for power/switching
// - LiPo powered with auto power-off feature (0.6uA quiescent current)
// *************************************************************************************************************
#ifndef CURRENT_RANGER
#error CurrentRanger target board required, see guide on how to add it to the IDE: lowpowerlab.com/currentranger
#endif
//***********************************************************************************************************
#include <FlashStorage.h> //for emulated EEPROM - https://github.com/cmaglie/FlashStorage
#include <Adafruit_FreeTouch.h> //https://github.com/adafruit/Adafruit_FreeTouch
#include <U8g2lib.h> //https://github.com/olikraus/u8g2/wiki/u8g2reference fonts:https://github.com/olikraus/u8g2/wiki/fntlistall
//#include <ATSAMD21_ADC.h>
// CurrentRanger Firmware Version
#define FW_VERSION "1.1.0"
//***********************************************************************************************************
#define BIAS_LED 11
#define LPFPIN 4
#define LPFLED LED_BUILTIN
#define AUTOFF PIN_AUTO_OFF
//***********************************************************************************************************
#define MA_PIN PIN_PA13 //#define MA 38
#define UA_PIN PIN_PA14 //#define UA 2
#define NA_PIN PIN_PA15 //#define NA 5
#define MA_GPIO_PIN PIN_PB11
#define UA_GPIO_PIN PIN_PA12
#define NA_GPIO_PIN PIN_PB10
#define PINOP(pin, OP) (PORT->Group[(pin) / 32].OP.reg = (1 << ((pin) % 32)))
#define PIN_OFF(THE_PIN) PINOP(THE_PIN, OUTCLR)
#define PIN_ON(THE_PIN) PINOP(THE_PIN, OUTSET)
#define PIN_TGL(THE_PIN) PINOP(THE_PIN, OUTTGL)
//***********************************************************************************************************
#define SENSE_OUTPUT A3
#define SENSE_GNDISO A2
#define SENSE_VIN A5
#define ADC_PRESCALER ADC_CTRLB_PRESCALER_DIV16
//#define ADC_AVGCTRL ADC_AVGCTRL_SAMPLENUM_128 | ADC_AVGCTRL_ADJRES(0x4ul)
//ADC_AVGCTRL_SAMPLENUM_1 | ADC_AVGCTRL_ADJRES(0x00ul); // take 1 sample, adjusting result by 0
//ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(0x4ul); //take 16 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_256 | ADC_AVGCTRL_ADJRES(0x4ul); //take 256 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_512 | ADC_AVGCTRL_ADJRES(0x4ul); //take 512 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_1024 | ADC_AVGCTRL_ADJRES(0x4ul); //take 1024 samples adjust by 4
#define ADC_SAMPCTRL 0b111 //sample timing [fast 0..0b111 slow]
#define ADCFULLRANGE 4095.0
#define VBAT_REFRESH_INTERVAL 5000 //ms
#define LOBAT_THRESHOLD 3.40 //volts
#define DAC_GND_ISO_OFFSET 10
#define DAC_HALF_SUPPLY_OFFSET 512
#define OUTPUT_CALIB_FACTOR 1.00 //calibrate final VOUT value
#define ADC_OVERLOAD 3900 //assuming GNDISO DAC output is very close to 0, this is max value less ground offset (varies from unit to unit, 3900 is a safe value)
//***********************************************************************************************************
//#define ADC_CALIBRATE_FORCED
#define ADC_CALIBRATE_FORCED_OFFSET 0
#define ADC_CALIBRATE_FORCED_GAIN 2048
#define LDO_DEFAULT 3.300 //volts, change to actual LDO output (measure GND-3V on OLED header)
//***********************************************************************************************************
#define BUZZER 1 // BUZZER pin
#define NOTE_C5 523
#define NOTE_D5 587
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_G5 784
#define NOTE_B5 988
#define NOTE_C6 1047
#define TONE_BEEP 4200
//***********************************************************************************************************
#define MODE_MANUAL 0
#define MODE_AUTORANGE 1
#define STARTUP_MODE MODE_MANUAL //or: MODE_AUTORANGE
#define SWITCHDELAY_UP 8 //ms
#define SWITCHDELAY_DOWN 8 //ms
#define RANGE_SWITCH_THRESHOLD_HIGH ADC_OVERLOAD //ADC's 12bit value
#define RANGE_SWITCH_THRESHOLD_LOW 6 //6*0.4xA ~ 2.4xA - range down below this value
//***********************************************************************************************************
#include <Wire.h> //i2c scanner: https://playground.arduino.cc/Main/I2cScanner
#define OLED_BAUD 1600000 //fast i2c clock
#define OLED_ADDRESS 0x3C //i2c address on most small OLEDs
#define OLED_REFRESH_INTERVAL 180 //ms
U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
//***********************************************************************************************************
#define TOUCH_N 8
#define TOUCH_U 9
#define TOUCH_M A4
Adafruit_FreeTouch qt[3] = {
Adafruit_FreeTouch( TOUCH_N, OVERSAMPLE_1, RESISTOR_50K, FREQ_MODE_NONE ),
Adafruit_FreeTouch( TOUCH_U, OVERSAMPLE_1, RESISTOR_50K, FREQ_MODE_NONE ),
Adafruit_FreeTouch( TOUCH_M, OVERSAMPLE_1, RESISTOR_50K, FREQ_MODE_NONE ),
};
#define TOUCH_HIGH_THRESHOLD 400 //range is 0..1023
#define TOUCH_SAMPLE_INTERVAL 50 //ms
//***********************************************************************************************************
#define SERIAL_UART_BAUD 230400 //Serial baud for HC-06/bluetooth output
#define BT_SERIAL_EN
//#define LOGGER_FORMAT_EXPONENT //ex: 123E-3 = 123mA
//#define LOGGER_FORMAT_NANOS //ex: 123456 = 123456nA = 123.456uA
//#define LOGGER_FORMAT_ADC //raw ADC output - note: automatic ADC_REF change
#define BT_REFRESH_INTERVAL 200 //ms
//***********************************************************************************************************
#define AUTOOFF_BUZZ_DELAY 500 //ms
#define AUTOOFF_DEFAULT 600 //seconds, turn unit off after 10min of inactivity
#define AUTOOFF_DISABLED 0xFFFF // do not turn off
#define AUTOOFF_SMART 0xFFFE // turn off only if there is no BT or USB data logging
//***********************************************************************************************************
#define LOGGING_FORMAT_EXPONENT 0 //ex: 123E-3 = 123mA
#define LOGGING_FORMAT_NANOS 1 //ex: 1234 = 1.234uA = 0.001234mA
#define LOGGING_FORMAT_MICROS 2 //ex: 1234 = 1.234mA = 1234000nA
#define LOGGING_FORMAT_MILLIS 3 //ex: 1234 = 1.234A = 1234000uA = 1234000000nA
#define LOGGING_FORMAT_ADC 4 //raw output for each range (0..4095)
//***********************************************************************************************************
#define ADC_SAMPLING_SPEED_AVG 0
#define ADC_SAMPLING_SPEED_FAST 1
#define ADC_SAMPLING_SPEED_SLOW 2
//***********************************************************************************************************
int offsetCorrectionValue = 0;
uint16_t gainCorrectionValue = 0;
float ldoValue = 0, ldoOptimized=0;
uint16_t autooff_interval = 0;
uint8_t USB_LOGGING_ENABLED = false;
uint8_t TOUCH_DEBUG_ENABLED = false;
uint8_t GPIO_HEADER_RANGING = false;
uint8_t BT_LOGGING_ENABLED = true;
uint8_t LOGGING_FORMAT = LOGGING_FORMAT_EXPONENT;
uint16_t ADC_SAMPLING_SPEED = ADC_SAMPLING_SPEED_AVG;
uint32_t ADC_AVGCTRL;
uint8_t calibrationPerformed=false;
uint8_t analog_ref_half=true;
char rangeUnit = 'm';
uint8_t OLED_found=false;
uint8_t autoffWarning=false;
uint8_t autoffBuzz=0;
#ifdef BT_SERIAL_EN
uint8_t BT_found=false;
#endif
FlashStorage(eeprom_ADCoffset, int);
FlashStorage(eeprom_ADCgain, uint16_t);
FlashStorage(eeprom_LDO, float);
FlashStorage(eeprom_AUTOFF, uint16_t);
FlashStorage(eeprom_LOGGINGFORMAT, uint8_t);
FlashStorage(eeprom_ADCSAMPLINGSPEED, uint8_t);
//***********************************************************************************************************
void setup() {
/*
//some buzz
tone(BUZZER, NOTE_C5); delay(100);
tone(BUZZER, NOTE_E5); delay(100);
tone(BUZZER, NOTE_G5); delay(100);
tone(BUZZER, NOTE_C6); delay(200);
noTone(BUZZER); delay(50);
tone(BUZZER, NOTE_G5); delay(100);
tone(BUZZER, NOTE_C6); delay(400);
noTone(BUZZER);
*/
delay(50); //Wire apparently needs this
Wire.begin();
Wire.beginTransmission(OLED_ADDRESS);
byte error = Wire.endTransmission();
if (error == 0)
{
Serial.print("OLED FOUND at 0x"); Serial.println(OLED_ADDRESS);
u8g2.begin();
//u8g2.setDisplayRotation(U8G2_R2); //if required (inside/custom mount?)
u8g2.setBusClock(OLED_BAUD);
OLED_found = true;
}
else Serial.println("NO OLED found...");
pinMode(A0, OUTPUT); //DAC/GNDISO
//DAC->CTRLB.bit.EOEN = 0x00; //enable high drive strength - already done in wiring.c
pinMode(SENSE_OUTPUT, INPUT);
pinMode(SENSE_GNDISO, INPUT); //GND-ISO
pinMode(SENSE_VIN, INPUT); //VIN > 1MEG > SENSE_VIN > 2MEG > GND
pinMode(AUTOFF, INPUT_PULLUP);
pinMode(BIAS_LED, OUTPUT);
pinMode(LPFLED, OUTPUT); //STATUS/LPF-LED
pinMode(LPFPIN, OUTPUT); //LPF control pin
pinMode(BUZZER, OUTPUT);
PINOP(MA_PIN, DIRSET);
PINOP(UA_PIN, DIRSET);
PINOP(NA_PIN, DIRSET);
PINOP(MA_GPIO_PIN, DIRSET);
PINOP(UA_GPIO_PIN, DIRSET);
PINOP(NA_GPIO_PIN, DIRSET);
qt[0].begin(); qt[1].begin(); qt[2].begin(); //touch pads
analogWriteResolution(10); //DAC resolution
analogReferenceHalf(true);
//DAC->CTRLA.bit.RUNSTDBY = 0x01;delay(1);
//DAC->CTRLB.bit.REFSEL=0;//pick internal reference, skip SYNCDAC (done by analogWrite)
analogWrite(A0, DAC_GND_ISO_OFFSET); // Initialize Dac to OFFSET
autooff_interval = eeprom_AUTOFF.read();
if (autooff_interval==0) {
autooff_interval = AUTOOFF_DEFAULT;
eeprom_AUTOFF.write(autooff_interval);
}
LOGGING_FORMAT = eeprom_LOGGINGFORMAT.read();
offsetCorrectionValue = eeprom_ADCoffset.read();
gainCorrectionValue = eeprom_ADCgain.read();
ldoValue = eeprom_LDO.read();
if(ldoValue==0)
saveLDO(LDO_DEFAULT);
else ldoOptimizeRefresh();
ADC_SAMPLING_SPEED = eeprom_ADCSAMPLINGSPEED.read();
refreshADCSamplingSpeed(); //load correct value into ADC_AVGCTRL
if (gainCorrectionValue!=0) //check if anything saved in EEPROM (gain changed via SerialUSB +/-)
analogReadCorrectionForced(offsetCorrectionValue, gainCorrectionValue);
else {
analogReadCorrectionForced(ADC_CALIBRATE_FORCED_OFFSET, ADC_CALIBRATE_FORCED_GAIN);
eeprom_ADCoffset.write(offsetCorrectionValue);
eeprom_ADCgain.write(gainCorrectionValue);
//(offset, gain) - gain is 12 bit number (1 bit integer + 11bit fractional, see DS p895)
// - offset is 12bit 2s complement format (DS p896)
}
if (OLED_found)
{
u8g2.clearBuffer();
u8g2.setFont(u8g2_font_8x13B_tf);
u8g2.setCursor(15,10); u8g2.print("CurrentRanger");
u8g2.setFont(u8g2_font_6x12_tf);
u8g2.setCursor(0,20); u8g2.print("Offset:");
u8g2.setCursor(64,20); u8g2.print(offsetCorrectionValue);
u8g2.setCursor(0,32); u8g2.print("Gain :");
u8g2.setCursor(64,32); u8g2.print(gainCorrectionValue);
u8g2.setCursor(0,44); u8g2.print("LDO :");
u8g2.setCursor(64,44); u8g2.print(ldoValue,3);
u8g2.setCursor(0, 56); u8g2.print("Firmware:");
u8g2.setCursor(64,56); u8g2.print(FW_VERSION);
u8g2.sendBuffer();
delay(2000);
}
#ifdef BT_SERIAL_EN
//BT check
Serial.print("Bluetooth AT check @");Serial.print(SERIAL_UART_BAUD);Serial.print("baud...");
SerialBT.begin(SERIAL_UART_BAUD);
SerialBT.print("AT"); //assuming HC-06, no line ending required
uint32_t timer=millis();
while(millis()-timer<1000) //about 1s to respond
{
if (SerialBT.available()==2 && SerialBT.read()=='O' && SerialBT.read()=='K')
{
BT_found=true;
break;
}
}
Serial.print(BT_found?"OK!":"No HC-06 response.\r\nChecking for BT v3.0...");
if (!BT_found)
{
SerialBT.print("\r\n"); //assuming HC-06 version 3.0 that requires line ending
uint32_t timer=millis();
while(millis()-timer<50) //about 50ms to respond
{
if (SerialBT.available()==4 && SerialBT.read()=='O' && SerialBT.read()=='K' && SerialBT.read()=='\r' && SerialBT.read() == '\n')
{
BT_found=true;
break;
}
}
Serial.println(BT_found?"OK!":"No response.");
}
BT_LOGGING_ENABLED = BT_found;
#endif
printSerialMenu();
WDTset();
if (STARTUP_MODE == MODE_AUTORANGE) toggleAutoranging();
}
uint32_t oledInterval=0, lpfInterval=0, offsetInterval=0, autorangeInterval=0, btInterval=0,
autoOffBuzzInterval=0, touchSampleInterval=0, lastKeepAlive=0, vbatInterval = VBAT_REFRESH_INTERVAL;
byte LPF=0, BIAS=0, AUTORANGE=0;
float vbat=0, VOUT=0;
float read1=0,read2=0,readDiff=0;
bool rangeSwitched=false;
#define RANGE_MA rangeUnit=='m'
#define RANGE_UA rangeUnit=='u'
#define RANGE_NA rangeUnit=='n'
void loop() {
//uint32_t timestamp=micros();
while (Serial.available()>0) {
char inByte = Serial.read();
// tickle the AUTOOFF function so it doesn't shut down when there are commands coming over serial
lastKeepAlive = millis();
switch (inByte) {
case '*':
eeprom_ADCgain.write(++gainCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new gainCorrectionValue = ");
Serial.println(gainCorrectionValue);
break;
case '/':
eeprom_ADCgain.write(--gainCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new gainCorrectionValue = ");
Serial.println(gainCorrectionValue);
break;
case '+':
eeprom_ADCoffset.write(++offsetCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new offsetCorrectionValue = ");
Serial.println(offsetCorrectionValue);
break;
case '-':
eeprom_ADCoffset.write(--offsetCorrectionValue);
analogReadCorrection(offsetCorrectionValue,gainCorrectionValue);
Serial.print("new offsetCorrectionValue = ");
Serial.println(offsetCorrectionValue);
break;
case '<':
saveLDO(ldoValue-0.001);
Serial.print("new LDO_Value = ");
Serial.println(ldoValue, 3);
break;
case '>':
saveLDO(ldoValue+0.001);
Serial.print("new LDO_Value = ");
Serial.println(ldoValue, 3);
break;
case 'r': //reboot to bootloader
Serial.print("\nRebooting to bootloader.");
for (byte i=0;i++<30;) { delay(10); Serial.print('.'); }
rebootIntoBootloader();
break;
case 'u': //toggle USB logging
USB_LOGGING_ENABLED =! USB_LOGGING_ENABLED;
Serial.println(USB_LOGGING_ENABLED ? "USB_LOGGING_ENABLED" : "USB_LOGGING_DISABLED");
break;
case 't': //toggle touchpad serial output debug info
TOUCH_DEBUG_ENABLED =! TOUCH_DEBUG_ENABLED;
Serial.println(TOUCH_DEBUG_ENABLED ? "TOUCH_DEBUG_ENABLED" : "TOUCH_DEBUG_DISABLED");
break;
case 'g': //toggle GPIOs indicating ranging
GPIO_HEADER_RANGING =! GPIO_HEADER_RANGING;
if (GPIO_HEADER_RANGING) {
if (rangeUnit=='m') PIN_ON(MA_GPIO_PIN); else PIN_OFF(MA_GPIO_PIN);
if (rangeUnit=='u') PIN_ON(UA_GPIO_PIN); else PIN_OFF(UA_GPIO_PIN);
if (rangeUnit=='n') PIN_ON(NA_GPIO_PIN); else PIN_OFF(NA_GPIO_PIN);
}
Serial.println(GPIO_HEADER_RANGING ? "GPIO_HEADER_RANGING_ENABLED" : "GPIO_HEADER_RANGING_DISABLED");
break;
case 'b': //toggle BT/serial logging
#ifdef BT_SERIAL_EN
if (BT_found) {
BT_LOGGING_ENABLED =! BT_LOGGING_ENABLED;
Serial.println(BT_LOGGING_ENABLED ? "BT_LOGGING_ENABLED" : "BT_LOGGING_DISABLED");
} else {
BT_LOGGING_ENABLED = false;
Serial.println("BT Module not found: cannot enable logging");
}
#else
Serial.println("BT_LOGGING Not Enabled");
#endif
break;
case 'f': //cycle through output logging formats
if (++LOGGING_FORMAT>LOGGING_FORMAT_ADC) LOGGING_FORMAT=LOGGING_FORMAT_EXPONENT;
eeprom_LOGGINGFORMAT.write(LOGGING_FORMAT);
if (LOGGING_FORMAT==LOGGING_FORMAT_EXPONENT) Serial.println("LOGGING_FORMAT_EXPONENT"); else
if (LOGGING_FORMAT==LOGGING_FORMAT_NANOS) Serial.println("LOGGING_FORMAT_NANOS"); else
if (LOGGING_FORMAT==LOGGING_FORMAT_MICROS) Serial.println("LOGGING_FORMAT_MICROS"); else
if (LOGGING_FORMAT==LOGGING_FORMAT_MILLIS) Serial.println("LOGGING_FORMAT_MILLIS"); else
if (LOGGING_FORMAT==LOGGING_FORMAT_ADC) Serial.println("LOGGING_FORMAT_ADC");
break;
case 's':
if (++ADC_SAMPLING_SPEED>ADC_SAMPLING_SPEED_SLOW) ADC_SAMPLING_SPEED=ADC_SAMPLING_SPEED_AVG;
if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_AVG) Serial.println("ADC_SAMPLING_SPEED_AVG"); else
if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_FAST) Serial.println("ADC_SAMPLING_SPEED_FAST"); else
if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_SLOW) Serial.println("ADC_SAMPLING_SPEED_SLOW");
eeprom_ADCSAMPLINGSPEED.write(ADC_SAMPLING_SPEED);
refreshADCSamplingSpeed();
break;
case 'a': //toggle autoOff function
if (autooff_interval == AUTOOFF_DEFAULT)
{
Serial.println("AUTOOFF_DISABLED");
autooff_interval = AUTOOFF_DISABLED;
}
else if (autooff_interval == AUTOOFF_SMART) {
Serial.println("AUTOOFF_DEFAULT");
autooff_interval = AUTOOFF_DEFAULT;
lastKeepAlive = millis();
} else {
// turn off only when there is no serial or BT data logging
Serial.println("AUTOOFF_SMART");
autooff_interval = AUTOOFF_SMART;
}
eeprom_AUTOFF.write(autooff_interval);
break;
case '?':
printSerialMenu();
break;
default: break;
}
}
if (AUTORANGE) {
readVOUT();
//assumes we only auto-range in DC mode (no bias)
if (readDiff <= RANGE_SWITCH_THRESHOLD_LOW)
{
if (RANGE_MA) { rangeUA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_DOWN); }
else if (RANGE_UA) { rangeNA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_DOWN); }
}
else if (readDiff >= RANGE_SWITCH_THRESHOLD_HIGH)
{
if (RANGE_NA) { rangeUA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_UP); }
else if (RANGE_UA) { rangeMA(); rangeSwitched=true; rangeBeep(SWITCHDELAY_UP); }
}
if (rangeSwitched) {
lastKeepAlive=millis();
rangeSwitched=false;
return; //!!!
}
}
uint8_t VOUTCalculated=false;
if (USB_LOGGING_ENABLED)
{//TODO: refactor
if (!AUTORANGE) readVOUT();
VOUT = readDiff*ldoOptimized*(BIAS?1:OUTPUT_CALIB_FACTOR);
VOUTCalculated=true;
if(LOGGING_FORMAT == LOGGING_FORMAT_EXPONENT) { Serial.print(VOUT); Serial.print("e"); Serial.println(RANGE_NA ? -9 : RANGE_UA ? -6 : -3); } else
if(LOGGING_FORMAT == LOGGING_FORMAT_NANOS) Serial.println(VOUT * (RANGE_NA ? 1 : RANGE_UA ? 1000 : 1000000)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_MICROS) Serial.println(VOUT * (RANGE_NA ? 0.001 : RANGE_UA ? 1 : 1000)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_MILLIS) Serial.println(VOUT * (RANGE_NA ? 0.000001 : RANGE_UA ? 0.001 : 1)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_ADC) Serial.println(readDiff,0);
}
#ifdef BT_SERIAL_EN
if (BT_LOGGING_ENABLED) {
if (OLED_found) {
u8g2.setFont(u8g2_font_siji_t_6x10); //https://github.com/olikraus/u8g2/wiki/fntgrpsiji
u8g2.drawGlyph(104, 10, 0xE00B); //BT icon
}
btInterval = millis();
if (!AUTORANGE) readVOUT();
if (!VOUTCalculated) {
VOUT = readDiff*ldoOptimized*(BIAS?1:OUTPUT_CALIB_FACTOR);
VOUTCalculated=true;
}
if(LOGGING_FORMAT == LOGGING_FORMAT_EXPONENT) { SerialBT.print(VOUT); SerialBT.print("e"); SerialBT.println(RANGE_NA ? -9 : RANGE_UA ? -6 : -3); } else
if(LOGGING_FORMAT == LOGGING_FORMAT_NANOS) SerialBT.println(VOUT * (RANGE_NA ? 1 : RANGE_UA ? 1000 : 1000000)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_MICROS) SerialBT.println(VOUT * (RANGE_NA ? 0.001 : RANGE_UA ? 1 : 1000)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_MILLIS) SerialBT.println(VOUT * (RANGE_NA ? 0.000001 : RANGE_UA ? 0.001 : 1)); else
if(LOGGING_FORMAT == LOGGING_FORMAT_ADC) SerialBT.println(readDiff,0);
}
#endif
//OLED refresh: ~22ms (SCK:1.6mhz, ADC:64samples/DIV16/b111)
if (OLED_found && millis() - oledInterval > OLED_REFRESH_INTERVAL) //refresh rate (ms)
{
oledInterval = millis();
if (!AUTORANGE) readVOUT();
if (!VOUTCalculated) VOUT = readDiff*ldoOptimized*(BIAS?1:OUTPUT_CALIB_FACTOR);
u8g2.clearBuffer(); //175us
u8g2.setFont(u8g2_font_6x12_tf); //7us
handleVbatRead();
u8g2.setFont(u8g2_font_siji_t_6x10);
if (vbat>4.3)
u8g2.drawGlyph(115, 10, 0xE23A); //charging!
else if(vbat>4.1)
u8g2.drawGlyph(115, 10, 0xE24B); //100%
else if(vbat>3.95)
u8g2.drawGlyph(115, 10, 0xE249); //80%
else if(vbat>3.85)
u8g2.drawGlyph(115, 10, 0xE247); //60%
else if(vbat>3.75)
u8g2.drawGlyph(115, 10, 0xE245); //40%
else if(vbat>3.65)
u8g2.drawGlyph(115, 10, 0xE244); //20%
else if(vbat>LOBAT_THRESHOLD)
u8g2.drawGlyph(115, 10, 0xE243); //5%!
else u8g2.drawGlyph(115, 10, 0xE242); //u8g2.drawStr(88,12,"LoBat!");
u8g2.setFont(u8g2_font_6x12_tf); //7us
if (AUTORANGE) {
u8g2.drawStr(0,12, analog_ref_half ? "AUTO\xb7\xbd" : "AUTO");
u8g2.setCursor(42,12); u8g2.print(readDiff,0);
} else {
if (analog_ref_half) u8g2.drawStr(0,12,"\xbd");
u8g2.setCursor(12,12); u8g2.print(readDiff,0);
}
if (autoffBuzz) u8g2.drawStr(5,26,"* AUTO OFF! *"); //autoffWarning
u8g2.setFont(u8g2_font_helvB24_te);
u8g2.setCursor(RANGE_MA ? 102 : 106, RANGE_UA ? 55:60); u8g2.print(RANGE_UA ? char('µ') : rangeUnit);
u8g2.setFont(u8g2_font_logisoso32_tr);
u8g2.setCursor(0,64); u8g2.print((BIAS&&abs(VOUT)>=0.4||!BIAS&&VOUT>=0.4)?VOUT:0, abs(VOUT)>=1000?0:1);
if (!BIAS && readDiff>ADC_OVERLOAD || BIAS && abs(readDiff)>ADC_OVERLOAD/2)
{
u8g2.setFont(u8g2_font_9x15B_tf);
u8g2.drawStr(0,28, "OVERLOAD!");
}
u8g2.sendBuffer();
}
WDTclear();
handleTouchPads(); //~112uS
handleAutoOff();
//Serial.println(micros()-timestamp);
} //loop()
void handleVbatRead() {
//limit how often we read the battery since it's not expected to change a lot
if (millis() - vbatInterval < VBAT_REFRESH_INTERVAL) return;
else vbatInterval = millis();
uint8_t half = analog_ref_half;
if (half) analogReferenceHalf(false);
vbat=adcRead(SENSE_VIN);
if (half) analogReferenceHalf(true);
vbat=((vbat/ADCFULLRANGE) * ldoValue) * 1.5; //1.5 given by vbat->A5 resistor ratio (1 / (2M * 1/(1M+2M)))
/*
syncADC();
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[SENSE_VIN].ulADCChannelNumber;
ADC->INPUTCTRL.bit.MUXNEG = 0x19;//ioGND
adcRead(); //discard first reading
vbat = adcRead();
syncADC();
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[SENSE_OUTPUT].ulADCChannelNumber;
ADC->INPUTCTRL.bit.MUXNEG = g_APinDescription[SENSE_GNDISO].ulADCChannelNumber;
syncADC();
*/
}
uint16_t valM=0, valU=0, valN=0;
void handleTouchPads() {
if (millis() - touchSampleInterval < TOUCH_SAMPLE_INTERVAL) return;
if (TOUCH_DEBUG_ENABLED) {
Serial.print(qt[2].measure());Serial.print('\t');
Serial.print(qt[1].measure());Serial.print('\t');
Serial.println(qt[0].measure());
}
bool MA_PRESSED = qt[2].measure()>TOUCH_HIGH_THRESHOLD;
bool UA_PRESSED = qt[1].measure()>TOUCH_HIGH_THRESHOLD;
bool NA_PRESSED = qt[0].measure()>TOUCH_HIGH_THRESHOLD;
touchSampleInterval = millis();
if (MA_PRESSED || UA_PRESSED || NA_PRESSED) lastKeepAlive=millis();
//range switching
if (!AUTORANGE) {
if (MA_PRESSED && !UA_PRESSED && !NA_PRESSED && rangeUnit!='m') { rangeMA(); rangeBeep(20); }
if (UA_PRESSED && !MA_PRESSED && !NA_PRESSED && rangeUnit!='u') { rangeUA(); rangeBeep(20); }
if (NA_PRESSED && !UA_PRESSED && !MA_PRESSED && rangeUnit!='n') { rangeNA(); rangeBeep(20); }
}
//LPF activation --- [NA+UA]
if (UA_PRESSED && NA_PRESSED && !MA_PRESSED && millis()-lpfInterval>1000) { toggleLPF(); Beep(3, false); }
//offset toggling (GNDISO to half supply) --- [MA+UA]
if (MA_PRESSED && UA_PRESSED && !NA_PRESSED && millis()-offsetInterval>1000) { toggleOffset(); Beep(3, false); }
//AUTORANGE toggling
if (MA_PRESSED && NA_PRESSED && !UA_PRESSED && millis()-autorangeInterval>1000) { toggleAutoranging(); Beep(20, false); delay(50); Beep(20, false); }
}
void rangeMA() {
rangeUnit='m';
PIN_ON(MA_PIN);
PIN_OFF(UA_PIN);
PIN_OFF(NA_PIN);
if (GPIO_HEADER_RANGING) {
PIN_ON(MA_GPIO_PIN);
PIN_OFF(UA_GPIO_PIN);
PIN_OFF(NA_GPIO_PIN);
}
analogReferenceHalf(true);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: MA");
#endif
}
void rangeUA() {
rangeUnit='u';
PIN_OFF(MA_PIN);
PIN_ON(UA_PIN);
PIN_OFF(NA_PIN);
if (GPIO_HEADER_RANGING) {
PIN_OFF(MA_GPIO_PIN);
PIN_ON(UA_GPIO_PIN);
PIN_OFF(NA_GPIO_PIN);
}
analogReferenceHalf(true);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: UA");
#endif
}
void rangeNA() {
rangeUnit='n';
PIN_OFF(MA_PIN);
PIN_OFF(UA_PIN);
PIN_ON(NA_PIN);
if (GPIO_HEADER_RANGING) {
PIN_OFF(MA_GPIO_PIN);
PIN_OFF(UA_GPIO_PIN);
PIN_ON(NA_GPIO_PIN);
}
analogReferenceHalf(true);
#ifdef BT_OUTPUT_ADC
if (BT_found) SerialBT.println("RANGE: NA");
#endif
}
void handleAutoOff() {
uint32_t autooff_deadline = uint32_t((autooff_interval == AUTOOFF_SMART && !(USB_LOGGING_ENABLED || BT_LOGGING_ENABLED))?AUTOOFF_DEFAULT:autooff_interval)*1000;
if (millis() - lastKeepAlive > autooff_deadline - 5*1000) {
autoffWarning = true;
if (millis()-autoOffBuzzInterval> AUTOOFF_BUZZ_DELAY)
{
autoOffBuzzInterval = millis();
autoffBuzz=!autoffBuzz;
if (autoffBuzz)
tone(BUZZER, NOTE_B5);
else
noTone(BUZZER);
}
if (millis() - lastKeepAlive > autooff_deadline) {
pinMode(AUTOFF, OUTPUT);
digitalWrite(AUTOFF, LOW);
}
}
else if (autoffWarning) { autoffWarning=autoffBuzz=false; digitalWrite(AUTOFF, HIGH); noTone(BUZZER); }
}
void toggleLPF() {
LPF=!LPF;
lpfInterval = millis();
digitalWrite(LPFPIN, LPF);
digitalWrite(LPFLED, LPF);
if (AUTORANGE && !LPF) toggleAutoranging(); //turn off AUTORANGE
}
void toggleOffset() {
BIAS=!BIAS;
offsetInterval = millis();
analogWrite(A0, (BIAS ? DAC_HALF_SUPPLY_OFFSET : DAC_GND_ISO_OFFSET));
digitalWrite(BIAS_LED, BIAS);
if (AUTORANGE && BIAS) toggleAutoranging(); //turn off AUTORANGE
}
void toggleAutoranging() {
autorangeInterval = millis();
AUTORANGE=!AUTORANGE;
if (AUTORANGE && BIAS) toggleOffset(); //turn off BIAS
if (AUTORANGE && !LPF) toggleLPF(); //turn on BIAS
}
void Beep(byte theDelay, boolean twoSounds) {
tone(BUZZER, TONE_BEEP, theDelay);
if (twoSounds)
{
delay(10);
tone(BUZZER, 4500, theDelay);
}
}
static __inline__ void syncADC() __attribute__((always_inline, unused));
static void syncADC() {
while(ADC->STATUS.bit.SYNCBUSY == 1);
}
void setupADC() {
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
syncADC();
ADC->REFCTRL.bit.REFCOMP = 1;
ADC->CTRLB.reg = ADC_PRESCALER | ADC_CTRLB_RESSEL_12BIT;
ADC->AVGCTRL.reg = ADC_AVGCTRL;
ADC->SAMPCTRL.reg = ADC_SAMPCTRL;
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
syncADC();
// // ADC Linearity/Bias Calibration from NVM (should already be done done in core)
// uint32_t bias = (*((uint32_t *) ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;
// uint32_t linearity = (*((uint32_t *) ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
// linearity |= ((*((uint32_t *) ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
// ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity);
}
int adcRead(byte ADCpin) {
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[ADCpin].ulADCChannelNumber;
syncADC();
ADC->SWTRIG.bit.START = 1;
while (ADC->INTFLAG.bit.RESRDY == 0);
ADC->INTFLAG.reg = ADC_INTFLAG_RESRDY;
syncADC();
return ADC->RESULT.reg;
}
void readVOUT() {
readDiff = adcRead(SENSE_OUTPUT) - adcRead(SENSE_GNDISO) + offsetCorrectionValue;
if (!analog_ref_half && readDiff > RANGE_SWITCH_THRESHOLD_LOW && readDiff < RANGE_SWITCH_THRESHOLD_HIGH/3)
{
analogReferenceHalf(true);
readVOUT();
}
else if (analog_ref_half && readDiff >= RANGE_SWITCH_THRESHOLD_HIGH)
{
analogReferenceHalf(false);
readVOUT();
}
}
void analogReadCorrectionForced(int offset, uint16_t gain) {
offsetCorrectionValue=offset;
gainCorrectionValue=gain;
analogReadCorrection(offset,gain);
}
void WDTset() {
// Generic clock generator 2, divisor = 32 (2^(DIV+1))
GCLK->GENDIV.reg = GCLK_GENDIV_ID(2) | GCLK_GENDIV_DIV(4);
// Enable clock generator 2 using low-power 32KHz oscillator. With /32 divisor above, this yields 1024Hz(ish) clock.
GCLK->GENCTRL.reg = GCLK_GENCTRL_ID(2) | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_DIVSEL;
while(GCLK->STATUS.bit.SYNCBUSY);
// WDT clock = clock gen 2
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_WDT | GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2;
WDT->CTRL.reg = 0; //disable WDT
while(WDT->STATUS.bit.SYNCBUSY);
WDT->INTENCLR.bit.EW = 1; //disable early warning
WDT->CONFIG.bit.PER = 0xA; //period ~8s
WDT->CTRL.bit.WEN = 0; //disable window mode
while(WDT->STATUS.bit.SYNCBUSY);
WDTclear();
WDT->CTRL.bit.ENABLE = 1; //enable WDT
while(WDT->STATUS.bit.SYNCBUSY);
}
uint32_t WDTInterval=0;
void WDTclear() {
if (millis() - WDTInterval > 6999) //pet the dog every 7s
{
WDT->CLEAR.reg = WDT_CLEAR_CLEAR_KEY;
//while(WDT->STATUS.bit.SYNCBUSY);
WDTInterval=millis();
}
}
void ldoOptimizeRefresh() {
if (analog_ref_half)
ldoOptimized = (ldoValue*500)/ADCFULLRANGE;
else
ldoOptimized = (ldoValue*1000)/ADCFULLRANGE;
}
void saveLDO(float newLdoValue) {
ldoValue = newLdoValue;
eeprom_LDO.write(newLdoValue);
ldoOptimizeRefresh();
}
void refreshADCSamplingSpeed() {
if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_AVG)
ADC_AVGCTRL = ADC_AVGCTRL_SAMPLENUM_64 | ADC_AVGCTRL_ADJRES(0x4ul);
else if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_FAST)
ADC_AVGCTRL = ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(0x4ul); //take 16 samples adjust by 4
else if (ADC_SAMPLING_SPEED==ADC_SAMPLING_SPEED_SLOW)
ADC_AVGCTRL = ADC_AVGCTRL_SAMPLENUM_256 | ADC_AVGCTRL_ADJRES(0x4ul); //take 512 samples adjust by 4
setupADC();
//other combinations:
//ADC_AVGCTRL_SAMPLENUM_128 | ADC_AVGCTRL_ADJRES(0x4ul)
//ADC_AVGCTRL_SAMPLENUM_1 | ADC_AVGCTRL_ADJRES(0x00ul); // take 1 sample, adjusting result by 0
//ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(0x4ul); //take 16 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_256 | ADC_AVGCTRL_ADJRES(0x4ul); //take 256 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_512 | ADC_AVGCTRL_ADJRES(0x4ul); //take 512 samples adjust by 4
//ADC_AVGCTRL_SAMPLENUM_1024 | ADC_AVGCTRL_ADJRES(0x4ul); //take 1024 samples adjust by 4
}
void printCalibInfo() {
Serial.println("\r\nADC calibration values:");
Serial.print("Offset="); Serial.println(offsetCorrectionValue);
Serial.print("Gain="); Serial.println(gainCorrectionValue);
Serial.print("LDO="); Serial.println(ldoValue,3);
Serial.println("\r\nEEPROM Settings:");
Serial.print("LoggingFormat="); Serial.println(LOGGING_FORMAT);
Serial.print("ADCSamplingSpeed="); Serial.println(ADC_SAMPLING_SPEED);
Serial.print("AutoOff=");
if (autooff_interval == AUTOOFF_DISABLED) {
Serial.println("DISABLED");
} else if (autooff_interval == AUTOOFF_SMART) {
Serial.println("SMART");
} else {
Serial.println(autooff_interval);
}
Serial.println("");
}
void printSerialMenu() {
// Print device name, firmware version and state for interop on PC side
Serial.println("\r\nCurrentRanger R3");
Serial.print("Firmware version: "); Serial.println(FW_VERSION);
Serial.print("BT Logging: "); Serial.println(BT_LOGGING_ENABLED);
Serial.print("USB Logging: "); Serial.println(USB_LOGGING_ENABLED);
printCalibInfo();
Serial.println("a = cycle Auto-Off function");
Serial.print ("b = toggle BT/serial logging (");Serial.print(SERIAL_UART_BAUD);Serial.println("baud)");
Serial.println("f = cycle serial logging formats (exponent,nA,uA,mA/raw-ADC)");
Serial.println("g = toggle GPIO range indication (SCK=mA,MISO=uA,MOSI=nA)");
Serial.println("r = reboot into bootloader");
Serial.println("s = cycle ADC sampling speeds (0=average,faster,slower)");
Serial.println("t = toggle touchpad serial output debug info");
Serial.println("u = toggle USB/serial logging");
Serial.println("< = Calibrate LDO value (-1mV)");
Serial.println("> = Calibrate LDO value (+1mV)");
Serial.println("* = Calibrate GAIN value (+1)");
Serial.println("/ = Calibrate GAIN value (-1)");
Serial.println("+ = Calibrate OFFSET value (+1)");
Serial.println("- = Calibrate OFFSET value (-1)");
Serial.println("? = Print this menu and calib info");
Serial.println();
}
void analogReferenceHalf(uint8_t half) {
analog_ref_half = half;
analogReference(half ? AR_INTERNAL1V65 : AR_DEFAULT);
ldoOptimizeRefresh();
}
void analogReadCorrection(int offset, uint16_t gain) {
ADC->OFFSETCORR.reg = ADC_OFFSETCORR_OFFSETCORR(offset);
ADC->GAINCORR.reg = ADC_GAINCORR_GAINCORR(gain);
ADC->CTRLB.bit.CORREN = 1;
while(ADC->STATUS.bit.SYNCBUSY);
}
void rangeBeep(uint16_t switch_delay) {
uint16_t freq = NOTE_C5;
if (RANGE_UA) freq = NOTE_D5;
if (RANGE_MA) freq = NOTE_E5;
tone(BUZZER, freq, switch_delay?switch_delay:20);
}
#define REBOOT_TOKEN 0xf01669ef //special token in RAM, picked up by the bootloader
void rebootIntoBootloader() {
*((volatile uint32_t *)(HMCRAMC0_ADDR + HMCRAMC0_SIZE - 4)) = REBOOT_TOKEN; //Entering bootloader from application: https://github.com/microsoft/uf2-samdx1/issues/41
NVIC_SystemReset();
}