-
Notifications
You must be signed in to change notification settings - Fork 5
/
diffusion_ddp_accum_constant_cu_frame_CLEVRER_robust.py
461 lines (394 loc) · 14.9 KB
/
diffusion_ddp_accum_constant_cu_frame_CLEVRER_robust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
DATASETS = 'data/CLEVRER'
EXPERIMENTS = 'experiment'
import os
import builtins
import time
import copy
import random
import warnings
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid
from vidm.network import ComplexUModel
from vidm.dataset import ImageFolderDataset
from guided_diffusion.script_util import create_gaussian_diffusion
parser = argparse.ArgumentParser(description="Major options for PyAnole")
parser.add_argument(
"--resolution",
type=int,
default=128,
help="resolution of the experiments",
)
parser.add_argument(
"--seed", type=int, help="seed for initializing training."
)
parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.")
parser.add_argument(
"--world-size",
default=-1,
type=int,
help="number of nodes for distributed training",
)
parser.add_argument(
"--rank", default=-1, type=int, help="node rank for distributed training"
)
parser.add_argument(
"--dist-url",
default="tcp://localhost:10001",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--multiprocessing-distributed",
action="store_true",
help="Use multi-processing distributed training to launch "
"N processes per node, which has N GPUs. This is the "
"fastest way to use PyTorch for either single node or "
"multi node data parallel training",
)
parser.add_argument(
"--workers",
default=32,
type=int,
metavar="N",
help="number of data loading workers (default: 32)",
)
parser.add_argument(
"--batch-size",
default=256,
type=int,
metavar="N",
help="mini-batch size (default: 256), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel",
)
parser.add_argument(
"--total-iters", default=800000, type=int, metavar="N", help="number of total iterations to run"
)
parser.add_argument("--start-iters", default=0, type=int, metavar="N",)
parser.add_argument(
"--print-freq",
type=int,
default=100,
help="frequency of showing training results on console",
)
parser.add_argument(
"--test-freq",
type=int,
default=1000,
help="frequency of running evaluation",
)
parser.add_argument(
"--save-freq",
type=int,
default=1000,
help="frequency of running evaluation",
)
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
args = parser.parse_args()
def loopy(dl):
while True:
for x in iter(dl): yield x
def ema(source, target, decay):
source_dict = source.state_dict()
target_dict = target.state_dict()
for key in target_dict.keys():
if 'coords' in key:
continue
target_dict[key].data.copy_(
target_dict[key].data * decay +
source_dict[key].data * (1 - decay))
def main():
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed training. "
"This will turn on the CUDNN deterministic setting, "
"which can slow down your training considerably! "
"You may see unexpected behavior when restarting "
"from checkpoints."
)
if args.gpu is not None:
warnings.warn(
"You have chosen a specific GPU. This will completely "
"disable data parallelism."
)
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
# create model
print("=> creating model")
model = ComplexUModel(
image_size=args.resolution,
in_channels=3,
model_channels=128,
out_channels=6,
num_res_blocks=2,
attention_resolutions=[16],
channel_mult=(1, 1, 2, 2, 4, 4),
num_heads=4,
num_head_channels=64,
resblock_updown=True,
use_scale_shift_norm=True,
diffusion_timesteps=1000,
video_timesteps=128,
spynet_pretrained='spynet_20210409-c6c1bd09.pth'
)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu]
)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# comment out the following line for debugging
raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
# AllGather implementation (batch shuffle, queue update, etc.) in
# this code only supports DistributedDataParallel.
raise NotImplementedError("Only DistributedDataParallel is supported.")
optimizer = optim.AdamW(model.parameters(), lr=2e-5)
ema_model = copy.deepcopy(model)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
args.start_iters = checkpoint["iters"]
model.load_state_dict(checkpoint["state_dict"], strict=False)
ema_model.load_state_dict(checkpoint["ema_state_dict"], strict=False)
optimizer.load_state_dict(checkpoint["optimizer"])
print(
"=> loaded checkpoint '{}' (iterations {})".format(
args.resume, checkpoint["iters"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
train_dataset = ImageFolderDataset(
path=os.path.join(DATASETS, 'CLEVRER'),
nframes=128,
train=True,
resolution=args.resolution,
use_labels=True,
xflip=True,
)
print("Number of datassets", len(train_dataset))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = loopy(torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler,
drop_last=True,
))
if not args.multiprocessing_distributed or (
args.multiprocessing_distributed and args.rank % ngpus_per_node == 0
):
writer = SummaryWriter(log_dir="runs/accum_p2_weighting_cu_frames_clevrer_robust")
else:
writer = None
# https://github.com/jychoi118/P2-weighting/blob/536a73aacda15a231209f2067238e83f69ac7fcb/guided_diffusion/script_util.py
gaussian_diffusion = create_gaussian_diffusion(
steps=1000,
learn_sigma=True,
noise_schedule='linear',
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
p2_gamma=1,
p2_k=1,
)
eval_gaussian_diffusion = create_gaussian_diffusion(
steps=1000,
learn_sigma=True,
noise_schedule='linear',
use_kl=False,
timestep_respacing="100",
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
p2_gamma=1,
p2_k=1,
)
for iter in range(args.start_iters, args.total_iters):
if iter % 10000 == 0:
if args.distributed:
train_sampler.set_epoch(iter)
# train for one epoch
train(train_loader, gaussian_diffusion, optimizer, model, ema_model, iter, writer, args)
if iter != 0 and iter % args.test_freq == 0 and args.rank % torch.cuda.device_count() == 0:
eval(train_loader, eval_gaussian_diffusion, ema_model, iter, writer, args)
if iter != 0 and iter % args.save_freq == 0 and args.rank % torch.cuda.device_count() == 0:
torch.save({
"iters": iter,
"state_dict": model.state_dict(),
"ema_state_dict": ema_model.state_dict(),
"optimizer": optimizer.state_dict()
}, os.path.join(EXPERIMENTS, "dddpm", "checkpoint_accum_cu_frames_clevrer_robust_%06d.pth.tar" % iter))
def train(train_loader, gaussian_diffusion, optimizer, model, ema_model, iter, writer, args):
batch_time = AverageMeter("Time", ":6.3f")
data_time = AverageMeter("Data", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
progress = ProgressMeter(
[batch_time, data_time, losses], prefix="Training: "
)
device = args.gpu
# measure data loading time
end = time.time()
batch = next(train_loader)
img0, img1, img1_minus_1, target0, target1, frames = batch
img0 = img0.to(device, non_blocking=True)
img1 = img1.to(device, non_blocking=True)
img1_minus_1 = img1_minus_1.to(device, non_blocking=True)
frame_th = frames.to(device, non_blocking=True).long()
batch = img0.shape[0]
diffusion_t = np.random.choice(1000, size=(batch,))
diffusion_t = torch.from_numpy(diffusion_t).to(device).long()
noise = torch.randn((batch, 3, args.resolution, args.resolution)).to(device)
data_time.update(time.time() - end)
optimizer.zero_grad()
loss = gaussian_diffusion.training_losses(model, img1, diffusion_t, model_kwargs={'vt':frame_th, 'x_mins_1': img1_minus_1, 'x_0': img0}, noise=noise)
loss = torch.mean(loss["loss"])
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
ema(model, ema_model, 0.999)
losses.update(loss.item(), batch)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if iter % args.print_freq == 0 and args.rank % torch.cuda.device_count() == 0:
progress.display(iter)
writer.add_scalar("loss", loss, iter)
def eval(train_loader, gaussian_diffusion, model, iter, writer, args):
device = args.gpu
batch = next(train_loader)
img0, img1, img1_minus_1, target0, target1, frames = batch
img0 = img0.to(device, non_blocking=True)
img1 = img1.to(device, non_blocking=True)
img1_minus_1 = img1_minus_1.to(device, non_blocking=True)
frame_th = frames.to(device, non_blocking=True).long()
batch = img0.shape[0]
img = torch.randn((batch, 3, args.resolution, args.resolution), device=device)
indices = list(range(gaussian_diffusion.num_timesteps))[::-1]
for i in tqdm(indices):
t = torch.tensor([i] * batch, device=device)
with torch.no_grad():
out = gaussian_diffusion.p_mean_variance(model, img, t, model_kwargs={'vt':frame_th, 'x_mins_1': img1_minus_1, 'x_0': img0})
noise = torch.randn((batch, 3, args.resolution, args.resolution), device=device)
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
) # no noise when t == 0
img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * noise
video_grid = make_grid(torch.cat([img0, img, img1]), nrow=8, normalize=True, value_range=(-1, 1))
if args.rank % torch.cuda.device_count() == 0:
writer.add_image("result", video_grid, iter)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, meters, prefix=""):
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + "[{:07d}]".format(batch)]
entries += [str(meter) for meter in self.meters]
print("\t".join(entries))
if __name__ == "__main__":
main()