-
Notifications
You must be signed in to change notification settings - Fork 81
/
prediction.py
202 lines (162 loc) · 9.24 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
from tqdm import tqdm
from eval_methods import *
from utils import *
class Predictor:
"""MTAD-GAT predictor class.
:param model: MTAD-GAT model (pre-trained) used to forecast and reconstruct
:param window_size: Length of the input sequence
:param n_features: Number of input features
:param pred_args: params for thresholding and predicting anomalies
"""
def __init__(self, model, window_size, n_features, pred_args, summary_file_name="summary.txt"):
self.model = model
self.window_size = window_size
self.n_features = n_features
self.dataset = pred_args["dataset"]
self.target_dims = pred_args["target_dims"]
self.scale_scores = pred_args["scale_scores"]
self.q = pred_args["q"]
self.level = pred_args["level"]
self.dynamic_pot = pred_args["dynamic_pot"]
self.use_mov_av = pred_args["use_mov_av"]
self.gamma = pred_args["gamma"]
self.reg_level = pred_args["reg_level"]
self.save_path = pred_args["save_path"]
self.batch_size = 256
self.use_cuda = True
self.pred_args = pred_args
self.summary_file_name = summary_file_name
def get_score(self, values):
"""Method that calculates anomaly score using given model and data
:param values: 2D array of multivariate time series data, shape (N, k)
:return np array of anomaly scores + dataframe with prediction for each channel and global anomalies
"""
print("Predicting and calculating anomaly scores..")
data = SlidingWindowDataset(values, self.window_size, self.target_dims)
loader = torch.utils.data.DataLoader(data, batch_size=self.batch_size, shuffle=False)
device = "cuda" if self.use_cuda and torch.cuda.is_available() else "cpu"
self.model.eval()
preds = []
recons = []
with torch.no_grad():
for x, y in tqdm(loader):
x = x.to(device)
y = y.to(device)
y_hat, _ = self.model(x)
# Shifting input to include the observed value (y) when doing the reconstruction
recon_x = torch.cat((x[:, 1:, :], y), dim=1)
_, window_recon = self.model(recon_x)
preds.append(y_hat.detach().cpu().numpy())
# Extract last reconstruction only
recons.append(window_recon[:, -1, :].detach().cpu().numpy())
preds = np.concatenate(preds, axis=0)
recons = np.concatenate(recons, axis=0)
actual = values.detach().cpu().numpy()[self.window_size:]
if self.target_dims is not None:
actual = actual[:, self.target_dims]
anomaly_scores = np.zeros_like(actual)
df_dict = {}
for i in range(preds.shape[1]):
df_dict[f"Forecast_{i}"] = preds[:, i]
df_dict[f"Recon_{i}"] = recons[:, i]
df_dict[f"True_{i}"] = actual[:, i]
a_score = np.sqrt((preds[:, i] - actual[:, i]) ** 2) + self.gamma * np.sqrt(
(recons[:, i] - actual[:, i]) ** 2)
if self.scale_scores:
q75, q25 = np.percentile(a_score, [75, 25])
iqr = q75 - q25
median = np.median(a_score)
a_score = (a_score - median) / (1+iqr)
anomaly_scores[:, i] = a_score
df_dict[f"A_Score_{i}"] = a_score
df = pd.DataFrame(df_dict)
anomaly_scores = np.mean(anomaly_scores, 1)
df['A_Score_Global'] = anomaly_scores
return df
def predict_anomalies(self, train, test, true_anomalies, load_scores=False, save_output=True,
scale_scores=False):
""" Predicts anomalies
:param train: 2D array of train multivariate time series data
:param test: 2D array of test multivariate time series data
:param true_anomalies: true anomalies of test set, None if not available
:param save_scores: Whether to save anomaly scores of train and test
:param load_scores: Whether to load anomaly scores instead of calculating them
:param save_output: Whether to save output dataframe
:param scale_scores: Whether to feature-wise scale anomaly scores
"""
if load_scores:
print("Loading anomaly scores")
train_pred_df = pd.read_pickle(f"{self.save_path}/train_output.pkl")
test_pred_df = pd.read_pickle(f"{self.save_path}/test_output.pkl")
train_anomaly_scores = train_pred_df['A_Score_Global'].values
test_anomaly_scores = test_pred_df['A_Score_Global'].values
else:
train_pred_df = self.get_score(train)
test_pred_df = self.get_score(test)
train_anomaly_scores = train_pred_df['A_Score_Global'].values
test_anomaly_scores = test_pred_df['A_Score_Global'].values
train_anomaly_scores = adjust_anomaly_scores(train_anomaly_scores, self.dataset, True, self.window_size)
test_anomaly_scores = adjust_anomaly_scores(test_anomaly_scores, self.dataset, False, self.window_size)
# Update df
train_pred_df['A_Score_Global'] = train_anomaly_scores
test_pred_df['A_Score_Global'] = test_anomaly_scores
if self.use_mov_av:
smoothing_window = int(self.batch_size * self.window_size * 0.05)
train_anomaly_scores = pd.DataFrame(train_anomaly_scores).ewm(span=smoothing_window).mean().values.flatten()
test_anomaly_scores = pd.DataFrame(test_anomaly_scores).ewm(span=smoothing_window).mean().values.flatten()
# Find threshold and predict anomalies at feature-level (for plotting and diagnosis purposes)
out_dim = self.n_features if self.target_dims is None else len(self.target_dims)
all_preds = np.zeros((len(test_pred_df), out_dim))
for i in range(out_dim):
train_feature_anom_scores = train_pred_df[f"A_Score_{i}"].values
test_feature_anom_scores = test_pred_df[f"A_Score_{i}"].values
epsilon = find_epsilon(train_feature_anom_scores, reg_level=2)
train_feature_anom_preds = (train_feature_anom_scores >= epsilon).astype(int)
test_feature_anom_preds = (test_feature_anom_scores >= epsilon).astype(int)
train_pred_df[f"A_Pred_{i}"] = train_feature_anom_preds
test_pred_df[f"A_Pred_{i}"] = test_feature_anom_preds
train_pred_df[f"Thresh_{i}"] = epsilon
test_pred_df[f"Thresh_{i}"] = epsilon
all_preds[:, i] = test_feature_anom_preds
# Global anomalies (entity-level) are predicted using aggregation of anomaly scores across all features
# These predictions are used to evaluate performance, as true anomalies are labeled at entity-level
# Evaluate using different threshold methods: brute-force, epsilon and peaks-over-treshold
e_eval = epsilon_eval(train_anomaly_scores, test_anomaly_scores, true_anomalies, reg_level=self.reg_level)
p_eval = pot_eval(train_anomaly_scores, test_anomaly_scores, true_anomalies,
q=self.q, level=self.level, dynamic=self.dynamic_pot)
if true_anomalies is not None:
bf_eval = bf_search(test_anomaly_scores, true_anomalies, start=0.01, end=2, step_num=100, verbose=False)
else:
bf_eval = {}
print(f"Results using epsilon method:\n {e_eval}")
print(f"Results using peak-over-threshold method:\n {p_eval}")
print(f"Results using best f1 score search:\n {bf_eval}")
for k, v in e_eval.items():
if not type(e_eval[k]) == list:
e_eval[k] = float(v)
for k, v in p_eval.items():
if not type(p_eval[k]) == list:
p_eval[k] = float(v)
for k, v in bf_eval.items():
bf_eval[k] = float(v)
# Save
summary = {"epsilon_result": e_eval, "pot_result": p_eval, "bf_result": bf_eval}
with open(f"{self.save_path}/{self.summary_file_name}", "w") as f:
json.dump(summary, f, indent=2)
# Save anomaly predictions made using epsilon method (could be changed to pot or bf-method)
if save_output:
global_epsilon = e_eval["threshold"]
test_pred_df["A_True_Global"] = true_anomalies
train_pred_df["Thresh_Global"] = global_epsilon
test_pred_df["Thresh_Global"] = global_epsilon
train_pred_df[f"A_Pred_Global"] = (train_anomaly_scores >= global_epsilon).astype(int)
test_preds_global = (test_anomaly_scores >= global_epsilon).astype(int)
# Adjust predictions according to evaluation strategy
if true_anomalies is not None:
test_preds_global = adjust_predicts(None, true_anomalies, global_epsilon, pred=test_preds_global)
test_pred_df[f"A_Pred_Global"] = test_preds_global
print(f"Saving output to {self.save_path}/<train/test>_output.pkl")
train_pred_df.to_pickle(f"{self.save_path}/train_output.pkl")
test_pred_df.to_pickle(f"{self.save_path}/test_output.pkl")
print("-- Done.")