-
Notifications
You must be signed in to change notification settings - Fork 3
/
NetworkOutputLayers.py
210 lines (177 loc) · 9.31 KB
/
NetworkOutputLayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy
import tensorflow as tf
import Constants
from Measures import create_confusion_matrix, get_average_precision, compute_binary_ious_tf
from NetworkLayers import Layer, L2_DEFAULT, BATCH_NORM_DECAY_DEFAULT
from Util_Network import prepare_input, global_avg_pool, prepare_collapsed_input_and_dropout, get_activation, \
apply_dropout, conv2d, conv2d_dilated
from datasets.Util.Util import smart_shape
MAX_ADJUSTABLE_CLASSES = 100 # max 100 objects per sequence should be sufficient
class Softmax(Layer):
output_layer = True
def __init__(self, name, inputs, targets, n_classes, tower_setup, global_average_pooling=False, dropout=0.0,
loss="ce", l2=L2_DEFAULT):
super(Softmax, self).__init__()
self.measures = {}
if global_average_pooling:
inp, n_features_inp = prepare_input(inputs)
inp = global_avg_pool(inp)
else:
inp, n_features_inp = prepare_collapsed_input_and_dropout(inputs, dropout)
with tf.variable_scope(name):
W = self.create_weight_variable("W", [n_features_inp, n_classes], l2, tower_setup)
b = self.create_bias_variable("b", [n_classes], tower_setup)
y_ref = tf.cast(targets, tf.int64)
y_pred = tf.matmul(inp, W) + b
self.outputs = [tf.nn.softmax(y_pred, -1, 'softmax')]
errors = tf.not_equal(tf.argmax(y_pred, 1), y_ref)
errors = tf.reduce_sum(tf.cast(errors, tower_setup.dtype))
self.measures['errors'] = errors
if loss == "ce":
cross_entropy_per_example = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=y_pred, labels=y_ref, name='cross_entropy_per_example')
self.loss = tf.reduce_sum(cross_entropy_per_example, name='cross_entropy_sum')
else:
assert False, "Unknown loss " + loss
self.add_scalar_summary(self.loss, "loss")
def bootstrapped_ce_loss(ce, fraction):
# only consider k worst pixels (lowest posterior probability) per image
assert fraction is not None
batch_size = ce.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(ce)[0]
k = tf.cast(tf.cast(tf.shape(ce)[1] * tf.shape(ce)[2], tf.float32) * fraction, tf.int32)
bs_ce, _ = tf.nn.top_k(tf.reshape(ce, shape=[batch_size, -1]), k=k, sorted=False)
bs_ce = tf.reduce_mean(bs_ce, axis=1)
bs_ce = tf.reduce_sum(bs_ce, axis=0)
return bs_ce
class SegmentationSoftmax(Layer):
output_layer = True
def create_weights(self, n_classes, filter_size, n_features_inp, l2, tower_setup):
if n_classes is None:
n_class_weights = 2
else:
n_class_weights = n_classes
W = self.create_weight_variable("W", filter_size + [n_features_inp, n_class_weights], l2, tower_setup)
b = self.create_bias_variable("b", [n_class_weights], tower_setup)
W_used = W
b_used = b
if n_classes is None:
with tf.device(tower_setup.variable_device):
n_classes_current = tf.get_variable("n_classes_current", shape=[], trainable=False, dtype=tf.int32)
W_adjustable = tf.get_variable("W_adjustable", filter_size + [n_features_inp, MAX_ADJUSTABLE_CLASSES])
b_adjustable = tf.get_variable("b_adjustable", [MAX_ADJUSTABLE_CLASSES])
if l2 > 0.0:
self.regularizers.append(l2 * tf.nn.l2_loss(W_adjustable))
W_used = W_adjustable[..., :n_classes_current]
b_used = b_adjustable[:n_classes_current]
else:
W_adjustable = b_adjustable = n_classes_current = None
return W, b, W_adjustable, b_adjustable, n_classes_current, W_used, b_used
def _create_adjustable_output_assign_data(self, tower_setup):
if self.W_adjustable is None or self.b_adjustable is None:
return None
else:
W_adjustable_val_placeholder = tf.placeholder(tower_setup.dtype, name="W_adjustable_val_placeholder")
b_adjustable_val_placeholder = tf.placeholder(tower_setup.dtype, name="b_adjustable_val_placeholder")
n_classes_current_val_placeholder = tf.placeholder(tf.int32, name="n_classes_current_val_placeholder")
assign_W_adjustable = tf.assign(self.W_adjustable, W_adjustable_val_placeholder)
assign_b_adjustable = tf.assign(self.b_adjustable, b_adjustable_val_placeholder)
assign_n_classes_current = tf.assign(self.n_classes_current, n_classes_current_val_placeholder)
return assign_W_adjustable, assign_b_adjustable, assign_n_classes_current, W_adjustable_val_placeholder, \
b_adjustable_val_placeholder, n_classes_current_val_placeholder
def adjust_weights_for_multiple_objects(self, session, n_objects):
W_val, b_val = session.run([self.W, self.b])
W_adjustable_val_new = numpy.zeros(W_val.shape[:-1] + (MAX_ADJUSTABLE_CLASSES,), dtype="float32")
b_adjustable_val_new = numpy.zeros(MAX_ADJUSTABLE_CLASSES, dtype="float32")
W_adjustable_val_new[..., :n_objects + 1] = W_val[..., [0] + ([1] * n_objects)]
b_adjustable_val_new[:n_objects + 1] = b_val[[0] + ([1] * n_objects)]
b_adjustable_val_new[1:n_objects + 1] -= numpy.log(n_objects)
assign_W_adjustable, assign_b_adjustable, assign_n_classes_current, W_adjustable_val_placeholder, \
b_adjustable_val_placeholder, n_classes_current_val_placeholder = self.adjustable_output_assign_data
session.run([assign_W_adjustable, assign_b_adjustable, assign_n_classes_current],
feed_dict={W_adjustable_val_placeholder: W_adjustable_val_new,
b_adjustable_val_placeholder: b_adjustable_val_new,
n_classes_current_val_placeholder: n_objects + 1})
@staticmethod
def create_loss(loss_str, fraction, no_void_label_mask, targets, tower_setup, void_label, y_pred):
ce = None
if "cont" in loss_str:
targets = tf.expand_dims(targets, axis=3)
targets_f = 1 - targets
targets = tf.concat((targets_f, targets), axis=3)
#eps = 1e-8
#soft_P = tf.nn.sigmoid(y_pred[..., 1])
#soft_P = tf.reshape(soft_P, (-1,))
#soft_f = tf.nn.sigmoid(y_pred[..., 0])
#soft_f = tf.reshape(soft_f, (-1,))
#targets = tf.reshape(targets, (-1,))
#ce = targets * tf.log(soft_P + eps)+ targets * tf.log(1 - soft_f + eps)
ce = tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=targets, name="ce")
if void_label is not None:
mask = tf.cast(no_void_label_mask, tower_setup.dtype)
ce *= mask
elif "ce" in loss_str:
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y_pred, labels=targets, name="ce")
if void_label is not None:
mask = tf.cast(no_void_label_mask, tower_setup.dtype)
ce *= mask
if loss_str == "ce":
ce = tf.reduce_mean(ce, axis=[1, 2])
ce = tf.reduce_sum(ce, axis=0)
loss = ce
elif loss_str in ["bootstrapped_ce", "bootstrapped_ce_cont"]:
bs_ce = bootstrapped_ce_loss(ce, fraction)
loss = bs_ce
else:
assert False, "Unknown loss " + loss_str
return loss
def create_measures(self, n_classes, pred, targets, loss="ce"):
measures = {}
if "cont" in loss:
targets = tf.cast(targets, tf.int64)
conf_matrix = tf.py_func(create_confusion_matrix, [pred, targets, self.n_classes_current], [tf.int64])
measures[Constants.CONFUSION_MATRIX] = conf_matrix[0]
return measures
def __init__(self, name, inputs, targets, n_classes, void_label, tower_setup, filter_size=(1, 1),
input_activation=None, dilation=None, resize_targets=False, resize_logits=False, loss="ce",
fraction=None, l2=L2_DEFAULT, dropout=0.0):
super(SegmentationSoftmax, self).__init__()
assert targets.get_shape().ndims == 4, targets.get_shape()
assert not (resize_targets and resize_logits)
inp, n_features_inp = prepare_input(inputs)
filter_size = list(filter_size)
with tf.variable_scope(name):
if input_activation is not None:
inp = get_activation(input_activation)(inp)
inp = apply_dropout(inp, dropout)
self.W, self.b, self.W_adjustable, self.b_adjustable, self.n_classes_current, W, b = self.create_weights(
n_classes, filter_size, n_features_inp, l2, tower_setup)
self.adjustable_output_assign_data = self._create_adjustable_output_assign_data(tower_setup)
if self.n_classes_current is None:
self.n_classes_current = n_classes
if dilation is None:
y_pred = conv2d(inp, W) + b
else:
y_pred = conv2d_dilated(inp, W, dilation) + b
self.outputs = [tf.nn.softmax(y_pred, -1, 'softmax')]
if resize_targets:
targets = tf.image.resize_nearest_neighbor(targets, tf.shape(y_pred)[1:3])
if resize_logits:
y_pred = tf.image.resize_images(y_pred, tf.shape(targets)[1:3])
pred = tf.argmax(y_pred, axis=3)
if "cont" not in loss:
targets = tf.cast(targets, tf.int64)
targets = tf.squeeze(targets, axis=3)
# TODO: Void label is not considered in the iou calculation.
if void_label is not None:
# avoid nan by replacing void label by 0
# note: the loss for these cases is multiplied by 0 below
void_label_mask = tf.equal(targets, void_label)
no_void_label_mask = tf.logical_not(void_label_mask)
targets = tf.where(void_label_mask, tf.zeros_like(targets), targets)
else:
no_void_label_mask = None
self.measures = self.create_measures(n_classes, pred, targets, loss)
self.loss = self.create_loss(loss, fraction, no_void_label_mask, targets, tower_setup, void_label, y_pred)
self.add_scalar_summary(self.loss, "loss")