Skip to content

Latest commit

 

History

History
92 lines (64 loc) · 2 KB

README.md

File metadata and controls

92 lines (64 loc) · 2 KB

Indoor Layout Estimation from a Single Image

one_lsun_result_banner

Citation

@inproceedings{lin2018layoutestimation,
    Author = {Hung Jin Lin and Sheng-Wei Huang and Shang-Hong Lai and Chen-Kuo Chiang},
    Title = {Indoor Scene Layout Estimation from a Single Image},
    Booktitle = {2018 24th International Conference on Pattern Recognition (ICPR)},
    Year = {2018}
}

The code is under evaluation and update TBD. Deprecated information below.

Prerequisite

  • Python 3.6+
  • OneGAN >= 0.3.0
  • scikit-image and click, tqdm

Usage

  • Dataset

    • Put LSUN Room Layout Dataset in folder ../data/lsun_room relative to this project.

      • images/: RGB color image *.jpg of indoor room scene
      • layout_seg/: layout ground truth *.mat of indoor room scene
      • layout_seg_images/: generated layout ground truth *.png of indoor room scene
    • Put SUN RGB-D Dataset in folder ../data/sun_rgbd relative to this project.

      • images/: RGB color image *.jpg in train and test respectly.
      • labels/: layout ground truth *.png in train and test respectly.
  • Toolkit

    • Put LSUN Room Layout Dataset toolkit in folder ../lsun_toolkit
      • Integrated scripts (TBD)
  • Training

    python main.py
    
    Usage: main.py [OPTIONS]
    
    Options:
      --name TEXT
      --dataset [lsun_room | others]
      --dataset_root TEXT
      --log_dir TEXT
      --image_size <INTEGER INTEGER>
      --epochs INTEGER
      --batch_size INTEGER
      --workers INTEGER
      --l1_weight FLOAT
      --resume PATH
  • Demo

    python demo.py
    
    Usage: demo.py [OPTIONS]
    
    Options:
      --device INTEGER
      --video TEXT
      --weight TEXT
      --input_size <INTEGER INTEGER>.
    
  • Evaluate with offical Matlab toolkit

    matlab -nojvm -nodisplay -nosplash -r "demo('$EXPERIMENT_OUTPUT_FODLER'); exit;"

Tools

  • Re-label

    • Output layout image (range from 1-5)
    python script/re_label.py