forked from oracle-samples/oci-data-science-ai-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.json
684 lines (684 loc) · 24.3 KB
/
index.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
[
{
"developed_on": "automlx_p38_cpu_v2",
"filename": "automlx-anomaly_detection.ipynb",
"keywords": [
"automlx",
"anomaly detection"
],
"license": "Universal Permissive License v 1.0",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_AnomalyDetection.ipynb",
"size": 1817110,
"summary": "Build an anomaly detection model using the experimental, fully unsupervised anomaly detection pipeline in Oracle AutoMLx for the public Credit Card Fraud dataset.",
"time_created": "2023-05-29T15:52:02",
"title": "Building and Explaining an Anomaly Detector using AutoMLx - Experimental"
},
{
"developed_on": "automlx_p38_cpu_v3",
"filename": "automlx-classifier.ipynb",
"keywords": [
"automlx",
"classification",
"classifier"
],
"license": "Universal Permissive License v 1.0",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Classification.ipynb",
"size": 7045225,
"summary": "Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.",
"time_created": "2023-05-29T15:52:02",
"title": "Building and Explaining a Classifier using AutoMLx"
},
{
"developed_on": "automlx_p38_cpu_v3",
"filename": "automlx-fairness.ipynb",
"keywords": [
"automlx",
"fairness"
],
"license": "Universal Permissive License v 1.0",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Fairness.ipynb",
"size": 5277687,
"summary": "Develop a model and evaluate its fairness",
"time_created": "2023-05-29T15:52:02",
"title": "Fairness with AutoMLx"
},
{
"developed_on": "automlx_p38_cpu_v3",
"filename": "automlx-regression.ipynb",
"keywords": [
"automlx",
"regression"
],
"license": "Universal Permissive License v 1.0",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Regression.ipynb",
"size": 7466599,
"summary": "Build a regressor using Oracle AutoMLx and a pricing data set. Training options will be explored and the resulting AutoMLx models will be evaluated.",
"time_created": "2023-05-29T15:52:02",
"title": "Building and Explaining a Regressor using AutoMLx"
},
{
"developed_on": "automlx_p38_cpu_v3",
"filename": "automlx-text_classification.ipynb",
"keywords": [
"automlx",
"text classification",
"text classifier"
],
"license": "Universal Permissive License v 1.0.",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Classification_Text.ipynb",
"size": 4614269,
"summary": "build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset",
"time_created": "2023-05-29T15:52:02",
"title": "Building and Explaining a Text Classifier using AutoMLx"
},
{
"developed_on": "computervision_p37_cpu_v1",
"filename": "audi-autonomous_driving-oracle_open_data.ipynb",
"keywords": [
"autonomous driving",
"oracle open data"
],
"license": "Universal Permissive License v 1.0",
"size": 19650,
"summary": "Download, process and display autonomous driving data, and map LiDAR data onto images.",
"time_created": "2023-03-30T09:13:20",
"title": "Audi Autonomous Driving Dataset Repository"
},
{
"developed_on": "pyspark30_p37_cpu_v5",
"filename": "big_data_service-(BDS)-livy.ipynb",
"keywords": [
"bds",
"big data service",
"livy"
],
"license": "Universal Permissive License v 1.0",
"size": 46207,
"summary": "Work interactively with a BDS cluster using Livy and two different connection techniques, SparkMagic (for a notebook environment) and with REST.",
"time_created": "2023-03-26T22:51:01",
"title": "Using Livy on the Big Data Service"
},
{
"developed_on": "pyspark30_p37_cpu_v5",
"filename": "read-write-big_data_service-(BDS).ipynb",
"keywords": [
"bds",
"fsspec"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Manage data using fsspec file system. Read and save data using pandas and pyarrow through fsspec file system.",
"time_created": "2023-03-29T11:04:51",
"title": "How to Read Data with fsspec from Oracle Big Data Service (BDS)"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "caltech-pedestrian_detection-oracle_open_data.ipynb",
"keywords": [
"caltech",
"pedestrian detection",
"oracle open data"
],
"license": "Universal Permissive License v 1.0",
"size": 15186,
"summary": "Download and process annotated video data of vehicles and pedestrians.",
"time_created": "2023-03-30T10:01:38",
"title": "Caltech Pedestrian Detection Benchmark Repository"
},
{
"developed_on": "pyspark30_p37_cpu_v5",
"filename": "pyspark-data_catalog-hive_metastore-data_flow.ipynb",
"keywords": [
"data catalog metastore",
"data flow"
],
"license": "Universal Permissive License v 1.0",
"size": 19211,
"summary": "Write and test a Data Flow batch application using the Oracle Cloud Infrastructure (OCI) Data Catalog Metastore. Configure the job, run the application and clean up resources.",
"time_created": "2023-03-26T22:51:01",
"title": "Using Data Catalog Metastore with DataFlow"
},
{
"developed_on": "nlp_p37_cpu_v2",
"filename": "data_labeling-text_classification.ipynb",
"keywords": [
"data labeling",
"text classification"
],
"license": "Universal Permissive License v 1.0",
"size": 22443,
"summary": "Use the Oracle Cloud Infrastructure (OCI) Data Labeling service to efficiently build enriched, labeled datasets for the purpose of accurately training AI/ML models. This notebook demonstrates operations that can be performed using the Advanced Data Science (ADS) Data Labeling module.",
"time_created": "2023-03-30T10:01:38",
"title": "Text Classification with Data Labeling Service Integration"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "visualizing_data-exploring_data.ipynb",
"keywords": [
"data visualization",
"seaborn plot",
"charts"
],
"license": "Universal Permissive License v 1.0",
"size": 20715,
"summary": "Perform common data visualization tasks and explore data with the ADS SDK. Plotting approaches include 3D plots, pie chart, GIS plots, and Seaborn pairplot graphs.",
"time_created": "2023-03-30T10:32:35",
"title": "Visualizing Data"
},
{
"developed_on": "pyspark30_p37_cpu_v5",
"filename": "pyspark-data_catalog-hive_metastore.ipynb",
"keywords": [
"dcat",
"data catalog metastore",
"pyspark"
],
"license": "Universal Permissive License v 1.0",
"size": 17252,
"summary": "Configure and use PySpark to process data in the Oracle Cloud Infrastructure (OCI) Data Catalog metastore, including common operations like creating and loading data from the metastore.",
"time_created": "2023-03-30T10:32:35",
"title": "Using Data Catalog Metastore with PySpark"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "train-register-deploy-other-frameworks.ipynb",
"keywords": [
"generic model",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 21028,
"summary": "Train, register, and deploy a generic model",
"time_created": "2023-03-26T22:51:01",
"title": "Train, Register, and Deploy a Generic Model"
},
{
"developed_on": "pypgx2310_p38_cpu_v1",
"filename": "graph_insight-autonomous_database.ipynb",
"keywords": [
"graph_insight",
"autonomous_database"
],
"license": "Universal Permissive License v 1.0",
"size": 121386,
"summary": "Access",
"time_created": "2023-06-05T07:46:16",
"title": "Bank Graph Example Notebook"
},
{
"developed_on": "pytorch110_p38_cpu_v1",
"filename": "train-register-deploy-huggingface-pipeline.ipynb",
"keywords": [
"huggingface",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 15957,
"summary": "Train, register, and deploy a huggingface pipeline.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, register, and deploy HuggingFace Pipeline"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "hyperparameter_tuning.ipynb",
"keywords": [
"hyperparameter tuning"
],
"license": "Universal Permissive License v 1.0",
"size": 24693,
"summary": "Use ADSTuner to optimize an estimator using the scikit-learn API",
"time_created": "2023-03-30T10:01:38",
"title": "Introduction to ADSTuner"
},
{
"developed_on": "sklearnex202130_p37_cpu_v1",
"filename": "accelerate-scikit_learn-with-intel_extension.ipynb",
"keywords": [
"intel",
"intel extension",
"scikit-learn",
"scikit learn"
],
"license": "Universal Permissive License v 1.0",
"size": 9596,
"summary": "Enhance performance of scikit-learn models using the Intel(R) oneAPI Data Analytics Library. Train a k-means model using both sklearn and the accelerated Intel library and compare performance.",
"time_created": "2023-03-26T22:51:01",
"title": "Intel Extension for Scikit-Learn"
},
{
"developed_on": "pyspark30_p37_cpu_v5",
"filename": "big_data_service-(BDS)-kerberos.ipynb",
"keywords": [
"kerberos",
"big data service",
"bds"
],
"license": "Universal Permissive License v 1.0",
"size": 19691,
"summary": "Connect to Oracle Big Data services using Kerberos.",
"time_created": "2023-03-27T11:14:06",
"title": "Connect to Oracle Big Data Service"
},
{
"developed_on": "nlp_p37_cpu_v2",
"filename": "natural_language_processing.ipynb",
"keywords": [
"language services",
"string manipulation",
"regex",
"regular expression",
"natural language processing",
"NLP",
"part-of-speech tagging",
"named entity recognition",
"sentiment analysis",
"custom plugins"
],
"license": "Universal Permissive License v 1.0",
"size": 36063,
"summary": "Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs.",
"time_created": "2023-03-26T22:51:01",
"title": "Natural Language Processing"
},
{
"developed_on": "automlx_p38_cpu_v3",
"filename": "automlx-forecasting.ipynb",
"keywords": [
"language services",
"string manipulation",
"regex",
"regular expression",
"natural language processing",
"NLP",
"part-of-speech tagging",
"named entity recognition",
"sentiment analysis",
"custom plugins"
],
"license": "Universal Permissive License v 1.0",
"original_source": "https://github.com/oracle-samples/automlx/blob/main/demos/OracleAutoMLx_Forecasting.ipynb",
"size": 5638148,
"summary": "Use Oracle AutoMLx to build a forecast model with real-world data sets.",
"time_created": "2023-05-29T15:52:02",
"title": "Building a Forecaster using AutoMLx"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "train-register-deploy-lightgbm.ipynb",
"keywords": [
"lightgbm",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 12216,
"summary": "Train, register, and deploy a LightGBM model.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, Register, and Deploy a LightGBM Model"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "load_data-object_storage-hive-autonomous-database.ipynb",
"keywords": [
"loading data",
"autonomous database",
"adw",
"hive",
"pandas",
"dask",
"object storage"
],
"license": "Universal Permissive License v 1.0",
"size": 10007,
"summary": "Load data from sources including ADW, Object Storage, and Hive in formats like parquet, csv etc",
"time_created": "2023-03-26T22:51:01",
"title": "Loading Data With Pandas & Dask"
},
{
"developed_on": "dbexp_p38_cpu_v1",
"filename": "model_version_set.ipynb",
"keywords": [
"model",
"model experiments",
"model version set"
],
"license": "Universal Permissive License v 1.0",
"size": 20067,
"summary": "A model version set is a way to track the relationships between models. As a container, the model version set takes a collection of models. Those models are assigned a sequential version number based on the order they are entered into the model version set.",
"time_created": "2023-03-26T22:51:01",
"title": "Introduction to Model Version Set"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "model_evaluation-with-ADSEvaluator.ipynb",
"keywords": [
"model evaluation",
"binary classification",
"regression",
"multi-class classification",
"imbalanced dataset",
"synthetic dataset"
],
"license": "Universal Permissive License v 1.0",
"size": 35837,
"summary": "Train and evaluate different types of models: binary classification using an imbalanced dataset, multi-class classification using a synthetically generated dataset consisting of three equally distributed classes, and a regression using a synthetically generated dataset with positive targets.",
"time_created": "2023-03-30T10:45:38",
"title": "Model Evaluation with ADSEvaluator"
},
{
"developed_on": "nlp_p37_cpu_v2",
"filename": "text_classification-model_explanation-lime.ipynb",
"keywords": [
"nlp",
"lime",
"model_explanation",
"text_classification",
"text_explanation"
],
"license": "Universal Permissive License v 1.0",
"size": 16325,
"summary": "Perform model explanations on an NLP classifier using the locally interpretable model explanations technique (LIME).",
"time_created": "2023-03-30T10:32:35",
"title": "Text Classification and Model Explanations using LIME"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "genome_visualization-oracle_open_data.ipynb",
"keywords": [
"object annotation",
"genome visualization",
"oracle open data"
],
"license": "Universal Permissive License v 1.0 (https://oss.oracle.com/licenses/upl/)",
"size": 14739,
"summary": "Load visual data, define regions, and visualize objects using metadata to connect structured images to language.",
"time_created": "2023-03-30T10:01:38",
"title": "Visual Genome Repository"
},
{
"developed_on": "nlp_p37_cpu_v2",
"filename": "onnx-integration-ads.ipynb",
"keywords": [
"onnx",
"deploy model"
],
"license": "Universal Permissive License v 1.0",
"size": 15896,
"summary": "Extract text from common formats (e.g. PDF and Word) into plain text. Customize this process for individual use cases.",
"time_created": "2023-07-17T22:35:37",
"title": "ONNX Integration with the Accelerated Data Science (ADS) SDK"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "pipelines-ml_lifecycle.ipynb",
"keywords": [
"pipelines",
"pipeline step",
"jobs pipeline"
],
"license": "Universal Permissive License v 1.0",
"size": 36342,
"summary": "Create and use ML pipelines through the entire machine learning lifecycle",
"time_created": "2023-03-26T22:51:01",
"title": "Working with Pipelines"
},
{
"developed_on": "pypgx2310_p38_cpu_v1",
"filename": "pypgx-graph_analytics-machine_learning.ipynb",
"keywords": [
"pypgx",
"graph analytics",
"pgx"
],
"license": "Universal Permissive License v 1.0",
"size": 885240,
"summary": "Use Oracle's Graph Analytics libraries to demonstrate graph algorithms, graph machine learning models, and use the property graph query language (PGQL)",
"time_created": "2023-03-26T22:51:01",
"title": "Graph Analytics and Graph Machine Learning with PyPGX"
},
{
"developed_on": "pyspark32_p38_cpu_v2",
"filename": "pyspark-data_flow_studio-introduction.ipynb",
"keywords": [
"pyspark",
"data flow"
],
"license": "Universal Permissive License v 1.0",
"size": 144930,
"summary": "Run interactive Spark workloads on a long lasting Oracle Cloud Infrastructure Data Flow Spark cluster through Apache Livy integration. Data Flow Spark Magic is used for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. It includes a set of magic commands for interactively running Spark code.",
"time_created": "2023-03-26T22:51:01",
"title": "Introduction to the Oracle Cloud Infrastructure Data Flow Studio"
},
{
"developed_on": "pyspark32_p38_cpu_v1",
"filename": "pyspark-data_flow_studio-spark_nlp.ipynb",
"keywords": [
"pyspark",
"data flow"
],
"license": "Universal Permissive License v 1.0",
"size": 17270,
"summary": "Demonstrates how to use Spark NLP within a long lasting Oracle Cloud Infrastructure Data Flow cluster.",
"time_created": "2023-03-26T22:51:01",
"title": "Spark NLP within Oracle Cloud Infrastructure Data Flow Studio"
},
{
"developed_on": "pyspark24_p37_cpu_v3",
"filename": "pyspark-data_flow-application.ipynb",
"keywords": [
"pyspark",
"data flow"
],
"license": "Universal Permissive License v 1.0",
"size": 10021,
"summary": "Develop local PySpark applications and work with remote clusters using Data Flow.",
"time_created": "2023-06-02T14:57:56",
"title": "PySpark"
},
{
"developed_on": "pytorch110_p38_cpu_v1",
"filename": "train-register-deploy-pytorch.ipynb",
"keywords": [
"pytorch",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 708060,
"summary": "Train, register, and deploy a PyTorch model.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, Register, and Deploy a PyTorch Model"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "train-register-deploy-sklearn.ipynb",
"keywords": [
"scikit-learn",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 12896,
"summary": "Train, register, and deploy an scikit-learn model.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, register, and deploy Sklearn Model"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "sql_magic-commands-with-autonomous_database.ipynb",
"keywords": [
"sql magic",
"autonomous database"
],
"license": "Universal Permissive License v 1.0",
"size": 13044,
"summary": "Use SQL Magic commands to work with a database within a Jupyter notebook. This notebook shows how to to use both line and cell magics.",
"time_created": "2023-03-30T10:48:51",
"title": "Introduction to SQL Magic"
},
{
"developed_on": "dataexpl_p37_cpu_v3",
"filename": "streaming-service-introduction.ipynb",
"keywords": [
"streaming",
"kafka"
],
"license": "Universal Permissive License v 1.0",
"size": 97660,
"summary": "Connect to Oracle Cloud Insfrastructure (OCI) Streaming service with kafka.",
"time_created": "2023-03-30T10:32:35",
"title": "Introduction to Streaming"
},
{
"developed_on": "tensorflow28_p38_cpu_v1",
"filename": "train-register-deploy-tensorflow.ipynb",
"keywords": [
"tensorflow",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 25991,
"summary": "Train, register, and deploy a TensorFlow model.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, Register, and Deploy a TensorFlow Model"
},
{
"developed_on": "nlp_p37_cpu_v2",
"filename": "document-text_extraction.ipynb",
"keywords": [
"text extraction",
"nlp"
],
"license": "Universal Permissive License v 1.0",
"size": 249672,
"summary": "Extract text from common formats (e.g. PDF and Word) into plain text. Customize this process for individual use cases.",
"time_created": "2023-03-26T22:51:01",
"title": "Text Extraction Using the Accelerated Data Science (ADS) SDK"
},
{
"developed_on": "generalml_p38_cpu_v1",
"filename": "train-register-deploy-xgboost.ipynb",
"keywords": [
"xgboost",
"deploy model",
"register model",
"train model"
],
"license": "Universal Permissive License v 1.0",
"size": 11999,
"summary": "Train, register, and deploy an XGBoost model.",
"time_created": "2023-03-26T22:51:01",
"title": "Train, Register, and Deploy an XGBoost Model"
},
{
"developed_on": "rapids2110_p37_gpu_v1",
"filename": "xgboost-with-rapids.ipynb",
"keywords": [
"xgboost",
"rapids",
"gpu",
"machine learning",
"classification"
],
"license": "Universal Permissive License v 1.0",
"size": 13296,
"summary": "Compare training time between CPU and GPU trained models using XGBoost",
"time_created": "2023-03-30T10:01:38",
"title": "XGBoost with RAPIDS"
},
{
"developed_on": "fspyspark32_p38_cpu_v1",
"filename": "feature_store_quickstart.ipynb",
"keywords": [
"pyspark",
"featurestore",
"machine learning",
"feature transformation",
"feature storage",
"feature validation",
"feature statistics"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Introduction to the Oracle Cloud Infrastructure Feature Store.Use feature store for feature ingestion and feature querying",
"time_created": "2023-03-29T11:04:51",
"title": "Feature Store Quickstart"
},
{
"developed_on": "fspyspark32_p38_cpu_v1",
"filename": "feature_store_querying.ipynb",
"keywords": [
"pyspark",
"featurestore",
"feature querying",
"feature transformation",
"feature storage",
"feature validation",
"feature statistics"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Explore Feature Store Functionalities.Transform, Store your Data in Feature Store.Query your data using Feature Store using pandas like interface to query and join",
"time_created": "2023-03-29T11:04:51",
"title": "Feature store handling querying operations"
},
{
"developed_on": "fspyspark32_p38_cpu_v1",
"filename": "feature_store_schema_evolution.ipynb",
"keywords": [
"pyspark",
"featurestore",
"feature transformation",
"feature storage",
"schema evolution"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Perform Schema Enforcement and Schema Evolution in Feature Store when materialising the data",
"time_created": "2023-03-29T11:04:51",
"title": "Schema Enforcement and Schema Evolution in Feature Store"
},
{
"developed_on": "fspyspark32_p38_cpu_v1",
"filename": "feature_store_spark_magic.ipynb",
"keywords": [
"pyspark",
"featurestore",
"feature transformation",
"feature storage",
"schema evolution",
"data flow"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Run Feature Store on interactive Spark workloads on a long lasting Data Flow Cluster",
"time_created": "2023-03-29T11:04:51",
"title": "Data Flow Studio : Big Data Operations in Feature Store"
},
{
"developed_on": "fspyspark32_p38_cpu_v1",
"filename": "feature_store_embeddings.ipynb",
"keywords": [
"pyspark",
"featurestore",
"feature transformation",
"feature querying",
"embeddings",
"llm"
],
"license": "Universal Permissive License v 1.0",
"size": 21304,
"summary": "Use feature store to convert words to embeddings using transformation",
"time_created": "2023-11-01T11:04:51",
"title": "Feature store embeddings using transformation"
}
]