-
Notifications
You must be signed in to change notification settings - Fork 0
/
sunposition.pas
980 lines (795 loc) · 32.7 KB
/
sunposition.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
(* Lazarus + FPC 0.9.30 + 2.4.4. On Linux for ARM, PPC, SPARC, x86. Lazarus + F *)
(* Some of the maths might require 2.8.0 on SPARC for reliable operation. *)
unit SunPosition;
(* This calculates the time of sunrise/sunset for a given location, ignoring *)
(* horizon elevation etc. It is transcribed from the JavaScript code at http:// *)
(* www.srrb.noaa.gov/highlights/sunrise/sunrise.html which is a superset of the *)
(* frequently-cited http://www.srrb.noaa.gov/highlights/sunrise/program.txt. *)
(* *)
(* The object of the exercise is to be able to predict an impending sunrise or *)
(* sunset, which can reasonably be expected to result in a significant change *)
(* in temperature. Abrupt changes of temperature at other times are probably *)
(* noteworthy, since they might indicate an imminent storm. *)
(* Transcribed to Pascal by Mark Morgan Lloyd. *)
{$hints off}{$notes off}
{$mode objfpc}
interface
uses
Classes, SysUtils;
FUNCTION CalcJD(year, month, day: INTEGER): DOUBLE;
//***********************************************************************/
//* Name: CalcJD */
//* Type: Function */
//* Purpose: Julian day from calendar day */
//* Arguments: */
//* year : 4 digit year */
//* month: January = 1 */
//* day : 1 - 31 */
//* Return value: */
//* The Julian day corresponding to the date */
//* Note: */
//* Number is returned for start of day. Fractional days should be */
//* added later. */
//***********************************************************************/
FUNCTION CalcTimeJulianCent(jd: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcTimeJulianCent */
//* Type: Function */
//* Purpose: convert Julian Day to centuries since J2000.0. */
//* Arguments: */
//* jd : the Julian Day to convert */
//* Return value: */
//* the T value corresponding to the Julian Day */
//***********************************************************************/
FUNCTION CalcSolNoonUTC(t, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSolNoonUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of solar */
//* noon for the given day at the given location on earth */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
FUNCTION CalcSunriseUTC(JD, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunriseUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of sunrise */
//* for the given day at the given location on earth*/
//* Arguments: */
//* JD : julian day */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
FUNCTION CalcSunsetUTC(JD, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunsetUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of sunset */
//* for the given day at the given location on earth*/
//* Arguments: */
//* JD : julian day */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
FUNCTION CalcSunElevation(t, utcmins, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunElevation */
//* Type: Function */
//* Purpose: calculate the elevation (altitude) of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* utcmins: UTC time in minutes */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* sun's elevation/altitude in degrees */
//***********************************************************************/
FUNCTION CalcSunAzimuth(t, utcmins, latitude, longitude: DOUBLE): DOUBLE;
// ***** NOT TESTED *****
//***********************************************************************/
//* Name: CalcSunAzimuth */
//* Type: Function */
//* Purpose: calculate the azimuth of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* utcmins: UTC time in minutes */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* sun's azimuth in degrees */
//***********************************************************************/
implementation
USES Math;
//***********************************************************************/
//***********************************************************************/
//* */
//*This section contains subroutines used in calculating solar position */
//* */
//***********************************************************************/
//***********************************************************************/
FUNCTION radToDeg(angleRad: DOUBLE): DOUBLE;
// Convert radian angle to degrees
BEGIN
RESULT:= 180.0 * angleRad / Pi
END { radToDeg } ;
function degToRad(angleDeg: DOUBLE): DOUBLE;
// Convert degree angle to radians
BEGIN
RESULT:= Pi * angleDeg / 180.0
END { degToRad } ;
FUNCTION calcDayOfYear(mn, dy: INTEGER; lpyr: BOOLEAN): INTEGER;
//***********************************************************************/
//* Name: calcDayOfYear */
//* Type: Function */
//* Purpose: Finds numerical day-of-year from mn, day and lp year info */
//* Arguments: */
//* month: January = 1 */
//* day : 1 - 31 */
//* lpyr : 1 if leap year, 0 if not */
//* Return value: */
//* The numerical day of year */
//***********************************************************************/
VAR k, doy: INTEGER;
BEGIN
IF lpyr THEN
k:= 1
ELSE
k:= 2;
doy:= Floor((275 * mn) / 9) - k * Floor((mn + 9) / 12) + dy - 30;
RESULT:= doy
END { calcDayOfYear } ;
FUNCTION calcDayOfWeek(juld: DOUBLE): STRING;
//***********************************************************************/
//* Name: calcDayOfWeek */
//* Type: Function */
//* Purpose: Derives weekday from Julian Day */
//* Arguments: */
//* juld : Julian Day */
//* Return value: */
//* String containing name of weekday */
//***********************************************************************/
VAR A: INTEGER;
DOW: STRING;
BEGIN
A:= Trunc(Frac((juld + 1.5) / 7) * 7);
CASE A OF
0: DOW:= 'Sunday';
1: DOW:= 'Monday';
2: DOW:= 'Tuesday';
3: DOW:= 'Wednesday';
4: DOW:= 'Thursday';
5: DOW:= 'Friday'
ELSE
DOW:= 'Saturday'
END;
RESULT:= DOW
END { calcDayOfWeek } ;
FUNCTION CalcJD(year, month, day: INTEGER): DOUBLE;
//***********************************************************************/
//* Name: CalcJD */
//* Type: Function */
//* Purpose: Julian day from calendar day */
//* Arguments: */
//* year : 4 digit year */
//* month: January = 1 */
//* day : 1 - 31 */
//* Return value: */
//* The Julian day corresponding to the date */
//* Note: */
//* Number is returned for start of day. Fractional days should be */
//* added later. */
//***********************************************************************/
VAR A, B: INTEGER;
JD: DOUBLE;
BEGIN
IF month <= 2 THEN BEGIN
year -= 1;
month += 12
END;
A:= Floor(year / 100);
B:= 2 - A + Floor(A / 4);
JD:= Floor(365.25 * (year + 4716)) + Floor(30.6001 * (month + 1)) + day + B - 1524.5;
RESULT:= JD
END { CalcJD } ;
TYPE TMonthList= ARRAY[0..11] OF STRING[15];
CONST monthName: TMonthList= ('January', 'February', 'March', 'April',
'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December');
monthAbbr: TMonthList= ('Jan', 'Feb', 'Mar', 'Apr',
'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec');
FUNCTION calcDateFromJD(jd: DOUBLE): STRING;
//***********************************************************************/
//* Name: calcDateFromJD */
//* Type: Function */
//* Purpose: Calendar date from Julian Day */
//* Arguments: */
//* jd : Julian Day */
//* Return value: */
//* String date in the form DD-MONTHNAME-YYYY */
//* Note: */
//***********************************************************************/
VAR z, f, A, alpha, B, C, D, E, day, month, year: INTEGER;
BEGIN
z:= Floor(jd + 0.5);
f:= Round(jd + 0.5) - z;
IF z < 2299161 THEN
A:= z
ELSE BEGIN
alpha:= Floor((z - 1867216.25) / 36524.25);
A:= z + 1 + alpha - Floor(alpha / 4.0)
END;
B:= A + 1524;
C:= Floor((B - 122.1) / 365.25);
D:= Floor(365.25 * C);
E:= Floor((B - D) / 30.6001);
day:= B - D - Floor(30.6001 * E) + f;
IF E < 14 THEN
month:= E - 1
ELSE
month:= E - 13;
IF month > 2 THEN
year:= C - 4716
ELSE
year:= C - 4715;
RESULT:= IntToStr(day) + '-' + monthName[month - 1] + '-' + IntToStr(year)
END { calcDateFromJD } ;
FUNCTION calcDayFromJD(jd: DOUBLE): STRING;
//***********************************************************************/
//* Name: calcDayFromJD */
//* Type: Function */
//* Purpose: Calendar day (minus year) from Julian Day */
//* Arguments: */
//* jd : Julian Day */
//* Return value: */
//* String date in the form DD-MONTH */
//***********************************************************************/
VAR z, f, A, alpha, B, C, D, E, day, month, year: INTEGER;
BEGIN
z:= Floor(jd + 0.5);
f:= Round(jd + 0.5) - z;
IF z < 2299161 THEN
A:= z
ELSE BEGIN
alpha:= Floor((z - 1867216.25) / 36524.25);
A:= z + 1 + alpha - Floor(alpha / 4.0)
END;
B:= A + 1524;
C:= Floor((B - 122.1) / 365.25);
D:= Floor(365.25 * C);
E:= Floor((B - D) / 30.6001);
day:= B - D - Floor(30.6001 * E) + f;
IF E < 14 THEN
month:= E - 1
ELSE
month:= E - 13;
IF month > 2 THEN
year:= C - 4716
ELSE
year:= C - 4715;
IF day < 10 THEN
RESULT:= '0' + IntToStr(day) + monthAbbr[month - 1]
ELSE
RESULT:= IntToStr(day) + monthAbbr[month - 1]
END { calcDayFromJD } ;
FUNCTION CalcTimeJulianCent(jd: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcTimeJulianCent */
//* Type: Function */
//* Purpose: convert Julian Day to centuries since J2000.0. */
//* Arguments: */
//* jd : the Julian Day to convert */
//* Return value: */
//* the T value corresponding to the Julian Day */
//***********************************************************************/
BEGIN
RESULT:= (jd - 2451545.0) / 36525.0
END { CalcTimeJulianCent } ;
FUNCTION calcJDFromJulianCent(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcJDFromJulianCent */
//* Type: Function */
//* Purpose: convert centuries since J2000.0 to Julian Day. */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* the Julian Day corresponding to the t value */
//***********************************************************************/
BEGIN
RESULT:= t * 36525.0 + 2451545.0
END { calcJDFromJulianCent } ;
FUNCTION calcGeomMeanLongSun(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calGeomMeanLongSun */
//* Type: Function */
//* Purpose: calculate the Geometric Mean Longitude of the Sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* the Geometric Mean Longitude of the Sun in degrees */
//***********************************************************************/
VAR L0: DOUBLE;
BEGIN
L0:= 280.46646 + t * (36000.76983 + 0.0003032 * t);
WHILE L0 > 360.0 DO
L0 -= 360.0;
WHILE L0 < 0.0 DO
L0 += 360.0;
RESULT:= L0 // in degrees
END { calcGeomMeanLongSun } ;
FUNCTION calcGeomMeanAnomalySun(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calGeomAnomalySun */
//* Type: Function */
//* Purpose: calculate the Geometric Mean Anomaly of the Sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* the Geometric Mean Anomaly of the Sun in degrees */
//***********************************************************************/
BEGIN
RESULT:= 357.52911 + t * (35999.05029 - 0.0001537 * t) // in degrees
END { calcGeomMeanAnomalySun } ;
FUNCTION calcEccentricityEarthOrbit(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcEccentricityEarthOrbit */
//* Type: Function */
//* Purpose: calculate the eccentricity of earth's orbit */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* the unitless eccentricity */
//***********************************************************************/
BEGIN
RESULT:= 0.016708634 - t * (0.000042037 + 0.0000001267 * t) // unitless
END { calcEccentricityEarthOrbit } ;
FUNCTION calcSunEqOfCenter(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunEqOfCenter */
//* Type: Function */
//* Purpose: calculate the equation of center for the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* in degrees */
//***********************************************************************/
VAR m, mrad, sinm, sin2m, sin3m: DOUBLE;
BEGIN
m:= calcGeomMeanAnomalySun(t);
mrad:= degToRad(m);
sinm:= Sin(mrad);
sin2m:= Sin(2 * mrad);
sin3m:= Sin(3 * mrad);
RESULT:= sinm * (1.914602 - t * (0.004817 + 0.000014 * t)) + sin2m *
(0.019993 - 0.000101 * t) + sin3m * 0.000289 // in degrees
END { calcSunEqOfCenter } ;
FUNCTION calcSunTrueLong(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunTrueLong */
//* Type: Function */
//* Purpose: calculate the true longitude of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun's true longitude in degrees */
//***********************************************************************/
VAR l0, c: DOUBLE;
BEGIN
l0:= calcGeomMeanLongSun(t);
c:= calcSunEqOfCenter(t);
RESULT:= l0 + c // in degrees
END { calcSunTrueLong } ;
FUNCTION calcSunTrueAnomaly(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunTrueAnomaly */
//* Type: Function */
//* Purpose: calculate the true anamoly of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun's true anamoly in degrees */
//***********************************************************************/
VAR m, c: DOUBLE;
BEGIN
m:= calcGeomMeanAnomalySun(t);
c:= calcSunEqOfCenter(t);
RESULT:= m + c // in degrees
END { calcSunTrueAnomaly } ;
FUNCTION calcSunRadVector(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunRadVector */
//* Type: Function */
//* Purpose: calculate the distance to the sun in AU */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun radius vector in AUs */
//***********************************************************************/
VAR v, e: DOUBLE;
BEGIN
v:= calcSunTrueAnomaly(t);
e:= calcEccentricityEarthOrbit(t);
RESULT:= (1.000001018 * (1 - e * e)) / (1 + e * Cos(degToRad(v))) // in AUs
END { calcSunRadVector } ;
FUNCTION calcSunApparentLong(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunApparentLong */
//* Type: Function */
//* Purpose: calculate the apparent longitude of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun's apparent longitude in degrees */
//***********************************************************************/
VAR o, omega: DOUBLE;
BEGIN
o:= calcSunTrueLong(t);
omega:= 125.04 - 1934.136 * t;
RESULT:= o - 0.00569 - 0.00478 * Sin(degToRad(omega)) // in degrees
END { calcSunApparentLong } ;
FUNCTION calcMeanObliquityOfEcliptic(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcMeanObliquityOfEcliptic */
//* Type: Function */
//* Purpose: calculate the mean obliquity of the ecliptic */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* mean obliquity in degrees */
//***********************************************************************/
VAR seconds: DOUBLE;
BEGIN
seconds:= 21.448 - t * (46.8150 + t * (0.00059 - t * (0.001813)));
RESULT:= 23.0 + (26.0 + (seconds / 60.0)) / 60.0 // in degrees
END { calcMeanObliquityOfEcliptic } ;
FUNCTION calcObliquityCorrection(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcObliquityCorrection */
//* Type: Function */
//* Purpose: calculate the corrected obliquity of the ecliptic */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* corrected obliquity in degrees */
//***********************************************************************/
VAR e0, omega: DOUBLE;
BEGIN
e0:= calcMeanObliquityOfEcliptic(t);
omega:= 125.04 - 1934.136 * t;
RESULT:= e0 + 0.00256 * Cos(degToRad(omega)) // in degrees
END { calcObliquityCorrection } ;
FUNCTION calcSunRtAscension(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunRtAscension */
//* Type: Function */
//* Purpose: calculate the right ascension of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun's right ascension in degrees */
//***********************************************************************/
VAR e, lambda, tananum, tanadenom: DOUBLE;
BEGIN
e:= calcObliquityCorrection(t);
lambda:= calcSunApparentLong(t);
tananum:= Cos(degToRad(e)) * Sin(degToRad(lambda));
tanadenom:= Cos(degToRad(lambda));
RESULT:= radToDeg(ArcTan2(tananum, tanadenom)) // in degrees
END { calcSunRtAscension } ;
FUNCTION calcSunDeclination(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcSunDeclination */
//* Type: Function */
//* Purpose: calculate the declination of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* sun's declination in degrees */
//***********************************************************************/
VAR e, lambda, sint: DOUBLE;
BEGIN
e:= calcObliquityCorrection(t);
lambda:= calcSunApparentLong(t);
sint:= Sin(degToRad(e)) * Sin(degToRad(lambda));
RESULT:= radToDeg(ArcSin(sint)) // in degrees
END { calcSunDeclination } ;
FUNCTION calcEquationOfTime(t: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcEquationOfTime */
//* Type: Function */
//* Purpose: calculate the difference between true solar time and mean */
//* solar time */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* Return value: */
//* equation of time in minutes of time */
//***********************************************************************/
VAR epsilon, l0, e, m, y, sin2l0, sinm, cos2l0, sin4l0, sin2m, Etime: DOUBLE;
BEGIN
epsilon:= calcObliquityCorrection(t);
l0:= calcGeomMeanLongSun(t);
e:= calcEccentricityEarthOrbit(t);
m:= calcGeomMeanAnomalySun(t);
y:= Tan(degToRad(epsilon) / 2.0);
y *= y;
sin2l0:= Sin(2.0 * degToRad(l0));
sinm:= Sin(degToRad(m));
cos2l0:= Cos(2.0 * degToRad(l0));
sin4l0:= Sin(4.0 * degToRad(l0));
sin2m:= Sin(2.0 * degToRad(m));
Etime:= y * sin2l0 - 2.0 * e * sinm + 4.0 * e * y * sinm * cos2l0
- 0.5 * y * y * sin4l0 - 1.25 * e * e * sin2m;
RESULT:= radToDeg(Etime) * 4.0 // in minutes of time
END { calcEquationOfTime } ;
FUNCTION calcHourAngleSunrise(lat, solarDec: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcHourAngleSunrise */
//* Type: Function */
//* Purpose: calculate the hour angle of the sun at sunrise for the */
//* latitude */
//* Arguments: */
//* lat : latitude of observer in degrees */
//* solarDec : declination angle of sun in degrees */
//* Return value: */
//* hour angle of sunrise in radians */
//***********************************************************************/
VAR latRad, sdRad, HAarg: DOUBLE;
BEGIN
latRad:= degToRad(lat);
sdRad:= degToRad(solarDec);
HAarg:= Cos(degToRad(90.833)) / (Cos(latRad) * Cos(sdRad)) - Tan(latRad) * Tan(sdRad);
RESULT:= ArcCos(HAarg) // in radians
END { calcHourAngleSunrise } ;
FUNCTION calcHourAngleSunset(lat, solarDec: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: calcHourAngleSunset */
//* Type: Function */
//* Purpose: calculate the hour angle of the sun at sunset for the */
//* latitude */
//* Arguments: */
//* lat : latitude of observer in degrees */
//* solarDec : declination angle of sun in degrees */
//* Return value: */
//* hour angle of sunset in radians */
//***********************************************************************/
VAR latRad, sdRad, HAarg: DOUBLE;
BEGIN
latRad:= degToRad(lat);
sdRad:= degToRad(solarDec);
HAarg:= Cos(degToRad(90.833)) / (Cos(latRad) * Cos(sdRad)) - Tan(latRad) * Tan(sdRad);
RESULT:= -ArcCos(HAarg); // in radians
END { calcHourAngleSunset } ;
FUNCTION CalcSolNoonUTC(t, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSolNoonUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of solar */
//* noon for the given day at the given location on earth */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
VAR tnoon, eqTime, solNoonUTC, newt: DOUBLE;
BEGIN
// First pass uses approximate solar noon to calculate eqtime
tnoon:= CalcTimeJulianCent(calcJDFromJulianCent(t) + longitude / 360.0);
eqTime:= calcEquationOfTime(tnoon);
solNoonUTC:= 720 + (longitude * 4) - eqTime; // min
newt:= CalcTimeJulianCent(calcJDFromJulianCent(t) -0.5 + solNoonUTC / 1440.0);
eqTime:= calcEquationOfTime(newt);
solNoonUTC:= 720 + (longitude * 4) - eqTime; // min
RESULT:= solNoonUTC
END { CalcSolNoonUTC } ;
FUNCTION CalcSunriseUTC(JD, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunriseUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of sunrise */
//* for the given day at the given location on earth*/
//* Arguments: */
//* JD : julian day */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
VAR t, noonmin, tnoon, eqTime, solarDec, hourAngle, delta, timeDiff,
timeUTC, newt: DOUBLE;
BEGIN
t:= CalcTimeJulianCent(JD);
// *** Find the time of solar noon at the location, and use that declination
noonmin:= CalcSolNoonUTC(t, longitude);
tnoon:= CalcTimeJulianCent (JD + noonmin / 1440.0);
// *** First pass to approximate sunrise (using solar noon)
eqTime:= calcEquationOfTime(tnoon);
solarDec:= calcSunDeclination(tnoon);
hourAngle:= calcHourAngleSunrise(latitude, solarDec);
delta:= longitude - radToDeg(hourAngle);
timeDiff:= 4 * delta;
timeUTC:= 720 + timeDiff - eqTime;
// *** Second pass includes fractional jday in gamma calc
newt:= CalcTimeJulianCent(calcJDFromJulianCent(t) + timeUTC / 1440.0);
eqTime:= calcEquationOfTime(newt);
solarDec:= calcSunDeclination(newt);
hourAngle:= calcHourAngleSunrise(latitude, solarDec);
delta:= longitude - radToDeg(hourAngle);
timeDiff:= 4 * delta;
timeUTC:= 720 + timeDiff - eqTime;
RESULT:= timeUTC // in minutes
END { CalcSunriseUTC } ;
FUNCTION CalcSunsetUTC(JD, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunsetUTC */
//* Type: Function */
//* Purpose: calculate the Universal Coordinated Time (UTC) of sunset */
//* for the given day at the given location on earth*/
//* Arguments: */
//* JD : julian day */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* time in minutes from zero Z */
//***********************************************************************/
VAR t, noonmin, tnoon, eqTime, solarDec, hourAngle, delta,
timeDiff, timeUTC, newt: DOUBLE;
BEGIN
t:= CalcTimeJulianCent(JD);
// *** Find the time of solar noon at the location, and use that declination
noonmin:= CalcSolNoonUTC(t, longitude);
tnoon:= CalcTimeJulianCent(JD + noonmin / 1440.0);
// First calculates sunrise and approx length of day
eqTime:= calcEquationOfTime(tnoon);
solarDec:= calcSunDeclination(tnoon);
hourAngle:= calcHourAngleSunset(latitude, solarDec);
delta:= longitude - radToDeg(hourAngle);
timeDiff:= 4 * delta;
timeUTC:= 720 + timeDiff - eqTime;
// first pass used to include fractional day in gamma calc
newt:= CalcTimeJulianCent(calcJDFromJulianCent(t) + timeUTC / 1440.0);
eqTime:= calcEquationOfTime(newt);
solarDec:= calcSunDeclination(newt);
hourAngle:= calcHourAngleSunset(latitude, solarDec);
delta:= longitude - radToDeg(hourAngle);
timeDiff:= 4 * delta;
timeUTC:= 720 + timeDiff - eqTime; // in minutes
RESULT:= timeUTC
END { CalcSunsetUTC } ;
FUNCTION CalcSunElevation(t, utcmins, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunElevation */
//* Type: Function */
//* Purpose: calculate the elevation (altitude) of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* utcmins: UTC time in minutes */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* sun's elevation/altitude in degrees */
//***********************************************************************/
(* This is not an original NOAA function, but is extracted from the calcSun() *)
(* function in http://www.srrb.noaa.gov/highlights/sunrise/azel.html so that *)
(* the current twilight state can be computed. MarkMLl. *)
VAR eqTime, solarDec, solarTimeFix, trueSolarTime, hourAngle, haRad,
csz, zenith, exoatmElevation, refractionCorrection,
te, solarZen: DOUBLE;
BEGIN
eqTime:= calcEquationOfTime(t);
solarDec:= calcSunDeclination(t);
solarTimeFix:= eqTime - 4.0 * longitude (* + 60.0 * zone *) ;
trueSolarTime:= utcmins + solarTimeFix; // in minutes
WHILE trueSolarTime > 1440 DO
trueSolarTime -= 1440;
hourAngle:= trueSolarTime / 4.0 - 180.0;
// Thanks to Louis Schwarzmayr for finding our error,
// and providing the following 2 lines to fix it:
IF hourAngle < -180 THEN
hourAngle += 360.0;
haRad:= degToRad(hourAngle);
csz:= Sin(degToRad(latitude)) *
Sin(degToRad(solarDec)) +
Cos(degToRad(latitude)) *
Cos(degToRad(solarDec)) * Cos(haRad);
IF csz > 1.0 THEN
csz:= 1.0
ELSE
IF csz < -1.0 THEN
csz:= -1.0;
zenith:= radToDeg(ArcCos(csz));
exoatmElevation:= 90.0 - zenith;
IF exoatmElevation > 85.0 THEN
refractionCorrection:= 0.0
ELSE BEGIN
te:= Tan(degToRad(exoatmElevation));
IF exoatmElevation > 5.0 THEN
refractionCorrection:= 58.1 / te - 0.07 / (te*te*te) +
0.000086 / (te*te*te*te*te)
ELSE
IF exoatmElevation > -0.575 THEN
refractionCorrection:= 1735.0 + exoatmElevation *
(-518.2 + exoatmElevation * (103.4 +
exoatmElevation * (-12.79 +
exoatmElevation * 0.711) ) )
ELSE
refractionCorrection:= -20.774 / te;
refractionCorrection:= refractionCorrection / 3600.0
END;
solarZen:= zenith - refractionCorrection;
RESULT:= 90.0 - solarZen
END { CalcSunElevation } ;
FUNCTION CalcSunAzimuth(t, utcmins, latitude, longitude: DOUBLE): DOUBLE;
//***********************************************************************/
//* Name: CalcSunAzimuth */
//* Type: Function */
//* Purpose: calculate the azimuth of the sun */
//* Arguments: */
//* t : number of Julian centuries since J2000.0 */
//* utcmins: UTC time in minutes */
//* latitude : latitude of observer in degrees */
//* longitude : longitude of observer in degrees */
//* Return value: */
//* sun's azimuth in degrees */
//***********************************************************************/
(* This is not an original NOAA function, but is extracted from the calcSun() *)
(* function in http://www.srrb.noaa.gov/highlights/sunrise/azel.html for *)
(* completeness. MarkMLl. *)
// ***** NOT TESTED *****
VAR eqTime, solarDec, solarTimeFix, trueSolarTime, hourAngle, haRad,
csz, zenith, azDenom, azRad, azimuth: DOUBLE;
BEGIN
eqTime:= calcEquationOfTime(t);
solarDec:= calcSunDeclination(t);
solarTimeFix:= eqTime - 4.0 * longitude (* + 60.0 * zone *) ;
trueSolarTime:= utcmins + solarTimeFix; // in minutes
WHILE trueSolarTime > 1440 DO
trueSolarTime -= 1440;
hourAngle:= trueSolarTime / 4.0 - 180.0;
// Thanks to Louis Schwarzmayr for finding our error,
// and providing the following 2 lines to fix it:
IF hourAngle < -180 THEN
hourAngle += 360.0;
haRad:= degToRad(hourAngle);
csz:= Sin(degToRad(latitude)) *
Sin(degToRad(solarDec)) +
Cos(degToRad(latitude)) *
Cos(degToRad(solarDec)) * Cos(haRad);
IF csz > 1.0 THEN
csz:= 1.0
ELSE
IF csz < -1.0 THEN
csz:= -1.0;
zenith:= radToDeg(ArcCos(csz));
azDenom:= Cos(degToRad(latitude)) * Sin(degToRad(zenith));
IF Abs(azDenom) > 0.001 THEN BEGIN
azRad:= (( Sin(degToRad(latitude)) *
Cos(degToRad(zenith)) ) -
Sin(degToRad(solarDec))) / azDenom;
IF Abs(azRad) > 1.0 THEN
IF azRad < 0 THEN
azRad:= -1.0
ELSE
azRad:= 1.0;
Azimuth:= 180.0 - radToDeg(ArcCos(azRad));
IF hourAngle > 0.0 THEN
azimuth:= -azimuth
ELSE
IF latitude > 0.0 THEN
azimuth:= 180.0
ELSE
azimuth:= 0.0
END;
IF azimuth < 0.0 THEN
azimuth += 360.0;
RESULT:= azimuth
END { CalcSunAzimuth } ;
end.