-
Notifications
You must be signed in to change notification settings - Fork 247
/
train.py
616 lines (484 loc) · 22.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Trains, evaluates and saves the TensorDetect model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import logging
import os
import sys
import scipy as scp
# configure logging
if 'TV_IS_DEV' in os.environ and os.environ['TV_IS_DEV']:
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
else:
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
# https://github.com/tensorflow/tensorflow/issues/2034#issuecomment-220820070
import numpy as np
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
sys.path.insert(1, os.path.realpath('incl'))
import tensorvision.train as train
import tensorvision.utils as utils
import tensorvision.core as core
import tensorflow_fcn
import time
import random
flags.DEFINE_string('name', None,
'Append a name Tag to run.')
flags.DEFINE_string('project', None,
'Append a name Tag to run.')
flags.DEFINE_string('logdir', None,
'Append a name Tag to run.')
flags.DEFINE_string('hypes', None,
'File storing model parameters.')
tf.app.flags.DEFINE_boolean(
'save', True, ('Whether to save the run. In case --nosave (default) '
'output will be saved to the folder TV_DIR_RUNS/debug, '
'hence it will get overwritten by further runs.'))
def _print_training_status(hypes, step, loss_values, start_time, lr):
# Prepare printing
duration = (time.time() - start_time) / int(utils.cfg.step_show)
examples_per_sec = hypes['solver']['batch_size'] / duration
sec_per_batch = float(duration)
if len(loss_values.keys()) >= 2:
info_str = ('Step {step}/{total_steps}: losses = ({loss_value1:.2f}, '
'{loss_value2:.2f});'
' lr = ({lr_value1:.2e}, {lr_value2:.2e}); '
'({sec_per_batch:.3f} sec)')
losses = loss_values.values()
lrs = lr.values()
logging.info(info_str.format(step=step,
total_steps=hypes['solver']['max_steps'],
loss_value1=losses[0],
loss_value2=losses[1],
lr_value1=lrs[0],
lr_value2=lrs[1],
sec_per_batch=sec_per_batch)
)
else:
assert(False)
def build_training_graph(hypes, queue, modules, first_iter):
"""
Build the tensorflow graph out of the model files.
Parameters
----------
hypes : dict
Hyperparameters
queue: tf.queue
Data Queue
modules : tuple
The modules load in utils.
Returns
-------
tuple
(q, train_op, loss, eval_lists) where
q is a dict with keys 'train' and 'val' which includes queues,
train_op is a tensorflow op,
loss is a float,
eval_lists is a dict with keys 'train' and 'val'
"""
data_input = modules['input']
encoder = modules['arch']
objective = modules['objective']
optimizer = modules['solver']
reuse = {True: False, False: True}[first_iter]
scope = tf.get_variable_scope()
with tf.variable_scope(scope, reuse=reuse):
learning_rate = tf.placeholder(tf.float32)
# Add Input Producers to the Graph
with tf.name_scope("Inputs"):
image, labels = data_input.inputs(hypes, queue, phase='train')
# Run inference on the encoder network
logits = encoder.inference(hypes, image, train=True)
# Build decoder on top of the logits
decoded_logits = objective.decoder(hypes, logits, train=True)
# Add to the Graph the Ops for loss calculation.
with tf.name_scope("Loss"):
losses = objective.loss(hypes, decoded_logits,
labels)
# Add to the Graph the Ops that calculate and apply gradients.
with tf.name_scope("Optimizer"):
global_step = tf.Variable(0, trainable=False)
# Build training operation
train_op = optimizer.training(hypes, losses,
global_step, learning_rate)
with tf.name_scope("Evaluation"):
# Add the Op to compare the logits to the labels during evaluation.
eval_list = objective.evaluation(
hypes, image, labels, decoded_logits, losses, global_step)
summary_op = tf.summary.merge_all()
graph = {}
graph['losses'] = losses
graph['eval_list'] = eval_list
graph['summary_op'] = summary_op
graph['train_op'] = train_op
graph['global_step'] = global_step
graph['learning_rate'] = learning_rate
return graph
def run_united_training(meta_hypes, subhypes, submodules, subgraph, tv_sess,
start_step=0):
"""Run one iteration of training."""
# Unpack operations for later use
summary = tf.Summary()
sess = tv_sess['sess']
summary_writer = tv_sess['writer']
solvers = {}
for model in meta_hypes['models']:
solvers[model] = submodules[model]['solver']
display_iter = meta_hypes['logging']['display_iter']
write_iter = meta_hypes['logging'].get('write_iter', 5*display_iter)
eval_iter = meta_hypes['logging']['eval_iter']
save_iter = meta_hypes['logging']['save_iter']
image_iter = meta_hypes['logging'].get('image_iter', 5*save_iter)
models = meta_hypes['model_list']
num_models = len(models)
py_smoothers = {}
dict_smoothers = {}
for model in models:
py_smoothers[model] = train.MedianSmoother(5)
dict_smoothers[model] = train.ExpoSmoother(0.95)
n = 0
eval_names = {}
eval_ops = {}
for model in models:
names, ops = zip(*subgraph[model]['eval_list'])
eval_names[model] = names
eval_ops[model] = ops
weights = meta_hypes['selection']['weights']
aweights = np.array([sum(weights[:i+1]) for i in range(len(weights))])
# eval_names, eval_ops = zip(*tv_graph['eval_list'])
# Run the training Step
start_time = time.time()
for step in xrange(start_step, meta_hypes['solver']['max_steps']):
# select on which model to run the training step
# select model randomly?
if not meta_hypes['selection']['random']:
if not meta_hypes['selection']['use_weights']:
# non-random selection
model = models[step % num_models]
else:
# non-random, some models are selected multiple times
select = np.argmax((aweights > step % aweights[-1]))
model = models[select]
else:
# random selection. Use weights
# to increase chance
r = random.random()
select = np.argmax((aweights > r))
model = models[select]
lr = solvers[model].get_learning_rate(subhypes[model], step)
feed_dict = {subgraph[model]['learning_rate']: lr}
sess.run([subgraph[model]['train_op']], feed_dict=feed_dict)
# Write the summaries and print an overview fairly often.
if step % display_iter == 0:
# Print status to stdout.
loss_values = {}
eval_results = {}
lrs = {}
if select == 1:
logging.info("Detection Loss was used.")
else:
logging.info("Segmentation Loss was used.")
for model in models:
loss_values[model] = sess.run(subgraph[model]['losses']
['total_loss'])
eval_results[model] = sess.run(eval_ops[model])
dict_smoothers[model].update_weights(eval_results[model])
lrs[model] = solvers[model].get_learning_rate(subhypes[model],
step)
_print_training_status(meta_hypes, step,
loss_values,
start_time, lrs)
for model in models:
train._print_eval_dict(eval_names[model], eval_results[model],
prefix=' (raw)')
smoothed_results = dict_smoothers[model].get_weights()
train._print_eval_dict(eval_names[model], smoothed_results,
prefix='(smooth)')
output = sess.run(subgraph['debug_ops'].values())
for name, res in zip(subgraph['debug_ops'].keys(), output):
logging.info("{} : {}".format(name, res))
if step % write_iter == 0:
# write values to summary
summary_str = sess.run(tv_sess['summary_op'],
feed_dict=feed_dict)
summary_writer.add_summary(summary_str,
global_step=step)
for model in models:
summary.value.add(tag='training/%s/total_loss' % model,
simple_value=float(loss_values[model]))
summary.value.add(tag='training/%s/learning_rate' % model,
simple_value=lrs[model])
summary_writer.add_summary(summary, step)
# Convert numpy types to simple types.
if False:
eval_results = np.array(eval_results)
eval_results = eval_results.tolist()
eval_dict = zip(eval_names[model], eval_results)
train._write_eval_dict_to_summary(eval_dict,
'Eval/%s/raw' % model,
summary_writer, step)
eval_dict = zip(eval_names[model], smoothed_results)
train._write_eval_dict_to_summary(eval_dict,
'Eval/%s/smooth' % model,
summary_writer, step)
# Reset timer
start_time = time.time()
# Do a evaluation and print the current state
if (step) % eval_iter == 0 and step > 0 or \
(step + 1) == meta_hypes['solver']['max_steps']:
# write checkpoint to disk
logging.info('Running Evaluation Scripts.')
for model in models:
eval_dict, images = submodules[model]['eval'].evaluate(
subhypes[model], sess,
subgraph[model]['image_pl'],
subgraph[model]['inf_out'])
train._write_images_to_summary(images, summary_writer, step)
if images is not None and len(images) > 0:
name = str(n % 10) + '_' + images[0][0]
image_dir = subhypes[model]['dirs']['image_dir']
image_file = os.path.join(image_dir, name)
scp.misc.imsave(image_file, images[0][1])
n = n + 1
logging.info("%s Evaluation Finished. Results" % model)
logging.info('Raw Results:')
utils.print_eval_dict(eval_dict, prefix='(raw) ')
train._write_eval_dict_to_summary(
eval_dict, 'Evaluation/%s/raw' % model,
summary_writer, step)
logging.info('Smooth Results:')
names, res = zip(*eval_dict)
smoothed = py_smoothers[model].update_weights(res)
eval_dict = zip(names, smoothed)
utils.print_eval_dict(eval_dict, prefix='(smooth)')
train._write_eval_dict_to_summary(
eval_dict, 'Evaluation/%s/smoothed' % model,
summary_writer, step)
if step % image_iter == 0 and step > 0 or \
(step + 1) == meta_hypes['solver']['max_steps']:
train._write_images_to_disk(meta_hypes, images, step)
logging.info("Evaluation Finished. All results will be saved to:")
logging.info(subhypes[model]['dirs']['output_dir'])
# Reset timer
start_time = time.time()
# Save a checkpoint periodically.
if (step) % save_iter == 0 and step > 0 or \
(step + 1) == meta_hypes['solver']['max_steps']:
# write checkpoint to disk
checkpoint_path = os.path.join(meta_hypes['dirs']['output_dir'],
'model.ckpt')
tv_sess['saver'].save(sess, checkpoint_path, global_step=step)
# Reset timer
start_time = time.time()
return
def _recombine_2_losses(meta_hypes, subgraph, subhypes, submodules):
if meta_hypes['loss_build']['recombine']:
# Computing weight loss
segmentation_loss = subgraph['segmentation']['losses']['xentropy']
detection_loss = subgraph['detection']['losses']['loss']
reg_loss_col = tf.GraphKeys.REGULARIZATION_LOSSES
weight_loss = tf.add_n(tf.get_collection(reg_loss_col),
name='reg_loss')
if meta_hypes['loss_build']['weighted']:
w = meta_hypes['loss_build']['weights']
total_loss = segmentation_loss*w[0] + \
detection_loss*w[1] + weight_loss
subgraph['segmentation']['losses']['total_loss'] = total_loss
else:
total_loss = segmentation_loss + detection_loss + weight_loss
subgraph['segmentation']['losses']['total_loss'] = total_loss
for model in meta_hypes['model_list']:
hypes = subhypes[model]
modules = submodules[model]
optimizer = modules['solver']
gs = subgraph[model]['global_step']
losses = subgraph[model]['losses']
lr = subgraph[model]['learning_rate']
subgraph[model]['train_op'] = optimizer.training(hypes, losses,
gs, lr)
def _recombine_3_losses(meta_hypes, subgraph, subhypes, submodules):
if meta_hypes['loss_build']['recombine']:
# Read all losses
segmentation_loss = subgraph['segmentation']['losses']['xentropy']
detection_loss = subgraph['detection']['losses']['loss']
road_loss = subgraph['road']['losses']['loss']
reg_loss_col = tf.GraphKeys.REGULARIZATION_LOSSES
weight_loss = tf.add_n(tf.get_collection(reg_loss_col),
name='reg_loss')
# compute total loss
if meta_hypes['loss_build']['weighted']:
w = meta_hypes['loss_build']['weights']
# use weights
total_loss = segmentation_loss*w[0] + \
detection_loss*w[1] + road_loss*w[2] + weight_loss
else:
total_loss = segmentation_loss + detection_loss + road_loss \
+ weight_loss
# Build train_ops using the new losses
subgraph['segmentation']['losses']['total_loss'] = total_loss
for model in meta_hypes['models']:
hypes = subhypes[model]
modules = submodules[model]
optimizer = modules['solver']
gs = subgraph[model]['global_step']
losses = subgraph[model]['losses']
lr = subgraph[model]['learning_rate']
subgraph[model]['train_op'] = optimizer.training(hypes, losses,
gs, lr)
def load_united_model(logdir):
subhypes = {}
subgraph = {}
submodules = {}
subqueues = {}
subgraph['debug_ops'] = {}
first_iter = True
meta_hypes = utils.load_hypes_from_logdir(logdir, subdir="",
base_path='hypes')
for model in meta_hypes['model_list']:
subhypes[model] = utils.load_hypes_from_logdir(logdir, subdir=model)
hypes = subhypes[model]
hypes['dirs']['output_dir'] = meta_hypes['dirs']['output_dir']
hypes['dirs']['image_dir'] = meta_hypes['dirs']['image_dir']
hypes['dirs']['data_dir'] = meta_hypes['dirs']['data_dir']
submodules[model] = utils.load_modules_from_logdir(logdir,
dirname=model,
postfix=model)
modules = submodules[model]
logging.info("Build %s computation Graph.", model)
with tf.name_scope("Queues_%s" % model):
subqueues[model] = modules['input'].create_queues(hypes, 'train')
logging.info('Building Model: %s' % model)
subgraph[model] = build_training_graph(hypes,
subqueues[model],
modules,
first_iter)
first_iter = False
if len(meta_hypes['model_list']) == 2:
_recombine_2_losses(meta_hypes, subgraph, subhypes, submodules)
else:
_recombine_3_losses(meta_hypes, subgraph, subhypes, submodules)
hypes = subhypes[meta_hypes['model_list'][0]]
tv_sess = core.start_tv_session(hypes)
sess = tv_sess['sess']
saver = tv_sess['saver']
cur_step = core.load_weights(logdir, sess, saver)
for model in meta_hypes['model_list']:
hypes = subhypes[model]
modules = submodules[model]
optimizer = modules['solver']
with tf.name_scope('Validation_%s' % model):
tf.get_variable_scope().reuse_variables()
image_pl = tf.placeholder(tf.float32)
image = tf.expand_dims(image_pl, 0)
inf_out = core.build_inference_graph(hypes, modules,
image=image)
subgraph[model]['image_pl'] = image_pl
subgraph[model]['inf_out'] = inf_out
# Start the data load
modules['input'].start_enqueuing_threads(hypes, subqueues[model],
'train', sess)
target_file = os.path.join(meta_hypes['dirs']['output_dir'], 'hypes.json')
with open(target_file, 'w') as outfile:
json.dump(meta_hypes, outfile, indent=2, sort_keys=True)
return meta_hypes, subhypes, submodules, subgraph, tv_sess, cur_step
def build_united_model(meta_hypes):
logging.info("Initialize training folder")
subhypes = {}
subgraph = {}
submodules = {}
subqueues = {}
subgraph['debug_ops'] = {}
base_path = meta_hypes['dirs']['base_path']
first_iter = True
for model in meta_hypes['model_list']:
subhypes_file = os.path.join(base_path, meta_hypes['models'][model])
with open(subhypes_file, 'r') as f:
logging.info("f: %s", f)
subhypes[model] = json.load(f)
hypes = subhypes[model]
utils.set_dirs(hypes, subhypes_file)
hypes['dirs']['output_dir'] = meta_hypes['dirs']['output_dir']
hypes['dirs']['data_dir'] = meta_hypes['dirs']['data_dir']
train.initialize_training_folder(hypes, files_dir=model,
logging=first_iter)
meta_hypes['dirs']['image_dir'] = hypes['dirs']['image_dir']
submodules[model] = utils.load_modules_from_hypes(
hypes, postfix="_%s" % model)
modules = submodules[model]
logging.info("Build %s computation Graph.", model)
with tf.name_scope("Queues_%s" % model):
subqueues[model] = modules['input'].create_queues(hypes, 'train')
logging.info('Building Model: %s' % model)
subgraph[model] = build_training_graph(hypes,
subqueues[model],
modules,
first_iter)
first_iter = False
if len(meta_hypes['models']) == 2:
_recombine_2_losses(meta_hypes, subgraph, subhypes, submodules)
else:
_recombine_3_losses(meta_hypes, subgraph, subhypes, submodules)
hypes = subhypes[meta_hypes['model_list'][0]]
tv_sess = core.start_tv_session(hypes)
sess = tv_sess['sess']
for model in meta_hypes['model_list']:
hypes = subhypes[model]
modules = submodules[model]
optimizer = modules['solver']
with tf.name_scope('Validation_%s' % model):
tf.get_variable_scope().reuse_variables()
image_pl = tf.placeholder(tf.float32)
image = tf.expand_dims(image_pl, 0)
inf_out = core.build_inference_graph(hypes, modules,
image=image)
subgraph[model]['image_pl'] = image_pl
subgraph[model]['inf_out'] = inf_out
# Start the data load
modules['input'].start_enqueuing_threads(hypes, subqueues[model],
'train', sess)
target_file = os.path.join(meta_hypes['dirs']['output_dir'], 'hypes.json')
with open(target_file, 'w') as outfile:
json.dump(meta_hypes, outfile, indent=2, sort_keys=True)
return subhypes, submodules, subgraph, tv_sess
def main(_):
utils.set_gpus_to_use()
load_weights = tf.app.flags.FLAGS.logdir is not None
if not load_weights:
with open(tf.app.flags.FLAGS.hypes, 'r') as f:
logging.info("f: %s", f)
hypes = json.load(f)
utils.load_plugins()
if 'TV_DIR_RUNS' in os.environ:
os.environ['TV_DIR_RUNS'] = os.path.join(os.environ['TV_DIR_RUNS'],
'MultiNet')
with tf.Session() as sess:
if not load_weights:
utils.set_dirs(hypes, tf.app.flags.FLAGS.hypes)
utils._add_paths_to_sys(hypes)
# Build united Model
subhypes, submodules, subgraph, tv_sess = build_united_model(hypes)
start_step = 0
else:
logdir = tf.app.flags.FLAGS.logdir
logging_file = os.path.join(logdir, "output.log")
utils.create_filewrite_handler(logging_file, mode='a')
hypes, subhypes, submodules, subgraph, tv_sess, start_step = \
load_united_model(logdir)
if start_step is None:
start_step = 0
# Run united training
run_united_training(hypes, subhypes, submodules, subgraph,
tv_sess, start_step=start_step)
# stopping input Threads
tv_sess['coord'].request_stop()
tv_sess['coord'].join(tv_sess['threads'])
if __name__ == '__main__':
tf.app.run()