-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
30 lines (28 loc) · 825 Bytes
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Percentage of dataset to use for training; rest is used for validation
percentage_training = 0.99
# Input parameters
batch_size = 64
img_rows, img_cols = 256, 256
kernel_size = 3
# Number of colors in color space
num_colors = 313
# directories
data_dir = 'data/'
imgs_dir = 'dataset/'
checkpoint_models_path = 'models/'
# Parameters for random dataset generation from imagenet
train_set_dim = 1024 # mb
# Number of neighbours for smoothing
nb_neighbors = 5
# Training parameters
fmt = '.jpeg'
# he normal = truncated normal distribution centered on 0
layer_init = 'he_normal'
# Save every # epochs
save_period = 1
# Stop training if validation loss does not improve for # epochs
patience = 50
# The number of epochs is unimportant; training stops after the patience period
epochs = 1000
learning_rate = 3.16e-5
T = 0.38