English | 简体中文
This directory provides examples that infer_xxx.py
fast finishes the deployment of InsighFace, including ArcFace\CosFace\VPL\Partial_FC on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
Taking ArcFace as an example, we demonstrate how infer_arcface.py
fast finishes the deployment of ArcFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/insightface/python/
# Download ArcFace model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# CPU inference
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device cpu
# GPU inference
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu
# TensorRT inference on GPU
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu \
--use_trt True
The visualized result after running is as follows
Prediction Done!
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
ArcFace model loading and initialization, among which model_file is the exported ONNX model format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
ArcFace.predict(image_data)Model prediction interface. Input images and output detection results.
Parameter
- image_data(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.FaceRecognitionResult
structure. Refer to Vision Model Prediction Results for its description.
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
Member variables of AdaFacePreprocessor are as follows
- size(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
- alpha(list[float]): Preprocess normalized alpha, and calculated as
x'=x*alpha+beta
. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]- beta(list[float]): Preprocess normalized beta, and calculated as
x'=x*alpha+beta
,beta defaults to [-1.f, -1.f, -1.f]
Member variables of AdaFacePostprocessor are as follows
- l2_normalize(bool): Whether to perform l2 normalization before outputting the face vector. Default False.