-
Notifications
You must be signed in to change notification settings - Fork 0
/
sudoku4bis.py
301 lines (238 loc) · 11 KB
/
sudoku4bis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
## Solve Every Sudoku Puzzle - Question 4
## See http://norvig.com/sudoku.html
## Throughout this program we have:
## r is a row, e.g. 'A'
## c is a column, e.g. '3'
## s is a square, e.g. 'A3'
## d is a digit, e.g. '9'
## u is a unit, e.g. ['A1','B1','C1','D1','E1','F1','G1','H1','I1']
## grid is a grid,e.g. 81 non-blank chars, e.g. starting with '.18...7...
## values is a dict of possible values, e.g. {'A1':'12349', 'A2':'8', ...}
def cross(A, B):
"Cross product of elements in A and elements in B."
return [a + b for a in A for b in B]
digits = '123456789'
rows = 'ABCDEFGHI'
cols = digits
squares = cross(rows, cols)
unitlist = ([cross(rows, c) for c in cols] +
[cross(r, cols) for r in rows] +
[cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123', '456', '789')])
units = dict((s, [u for u in unitlist if s in u])
for s in squares)
peers = dict((s, set(sum(units[s], [])) - set([s]))
for s in squares)
columns = [cross(rows, c) for c in cols]
lines = [cross(r, cols) for r in rows]
boxes = dict((s, set(sum([units[s][2]],[]))-set([s]))
for s in squares)
################ Unit Tests ################
def test():
"A set of tests that must pass."
assert len(squares) == 81
assert len(unitlist) == 27
assert all(len(units[s]) == 3 for s in squares)
assert all(len(peers[s]) == 20 for s in squares)
assert units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2'],
['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'],
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']]
assert peers['C2'] == set(['A2', 'B2', 'D2', 'E2', 'F2', 'G2', 'H2', 'I2',
'C1', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9',
'A1', 'A3', 'B1', 'B3'])
print('All tests pass.')
################ Parse a Grid ################
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
## To start, every square can be any digit; then assign values from the grid.
values = dict((s, digits) for s in squares)
for s, d in grid_values(grid).items():
if d in digits and not assign(values, s, d):
return False ## (Fail if we can't assign d to square s.)
return values
def grid_values(grid):
"Convert grid into a dict of {square: char} with '0' or '.' for empties."
chars = [c for c in grid if c in digits or c in '0.']
assert len(chars) == 81
return dict(zip(squares, chars))
################ Constraint Propagation ################
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and propagate.
Return values, except return False if a contradiction is detected."""
other_values = values[s].replace(d, '')
if all(eliminate(values, s, d2) for d2 in other_values):
return values
else:
return False
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <= 2.
Return values, except return False if a contradiction is detected."""
if d not in values[s]:
return values ## Already eliminated
values[s] = values[s].replace(d, '')
## (1) If a square s is reduced to one value d2, then eliminate d2 from the peers.
if len(values[s]) == 0:
return False ## Contradiction: removed last value
elif len(values[s]) == 1:
d2 = values[s]
if not all(eliminate(values, s2, d2) for s2 in peers[s]):
return False
## (2) If a unit u is reduced to only one place for a value d, then put it there.
for u in units[s]:
dplaces = [s for s in u if d in values[s]]
if len(dplaces) == 0:
return False ## Contradiction: no place for this value
elif len(dplaces) == 1:
# d can only be in one place in unit; assign it there
if not assign(values, dplaces[0], d):
return False
return values
############### Constraint propagation (in the boxes) for initialization of Hill Climbing ########################
################ Display as 2-D grid ################
def display(values):
"Display these values as a 2-D grid."
width = 1+max(len(values[s]) for s in squares)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
print
########################### Hill Climbing ##################################333333
def neighbors(currentNode):
"""retourne une liste des voisins du noeuds
les voisins sont les noeuds obtenus en echangeant les chiffres de deux carres appartenant a la meme boite (36 possibilites par boite)"""
neighbors = []
done = []
for s in squares:
newNode = currentNode.copy()
box = boxes[s] - set(done)
for s2 in box:
newNode[s], newNode[s2] = newNode[s2], newNode[s]
neighbors.append(newNode)
done.append(s)
return neighbors
def evaluation(values):
# l'evaluation est egal a: 0 - nb de conflit sur les lignes et colonnes
conflicts = 0
for line in lines:
l = []
for s in line:
l.append(values[s])
conflicts += len(set(l)) - 9
for column in columns:
c = []
for s in column:
c.append(values[s])
conflicts += len(set(c)) - 9
return conflicts
################ Utilities ################
def from_file(filename, sep='\n'):
"Parse a file into a list of strings, separated by sep."
return open(filename).read().strip().split(sep)
def shuffled(seq):
"Return a randomly shuffled copy of the input sequence."
seq = list(seq)
random.shuffle(seq)
return seq
################ System test ################
import time, random
def solve_all(grids, name='', showif=0.0):
"""Attempt to solve a sequence of grids. Report results.
When showif is a number of seconds, display puzzles that take longer.
When showif is None, don't display any puzzles."""
def time_solve(grid):
start = time.perf_counter()
values = solve_hill_climbing(grid)
t = time.perf_counter() - start
## Display puzzles that take long enough
if showif is not None and t > showif:
display(grid_values(grid))
if values: display(values)
print('(%.2f seconds)\n' % t)
return (t, solved(values))
times, results = zip(*[time_solve(grid) for grid in grids])
N = len(grids)
if N > 1:
print("Solved %d of %d %s puzzles (avg %.2f secs (%d Hz), max %.2f secs)." % (
sum(results), N, name, sum(times) / N, N / sum(times), max(times)))
def solved(values):
"A puzzle is solved if each unit is a permutation of the digits 1 to 9."
def unitsolved(unit): return set(values[s] for s in unit) == set(digits)
return values is not False and all(unitsolved(unit) for unit in unitlist)
def random_puzzle(N=17):
"""Make a random puzzle with N or more assignments. Restart on contradictions.
Note the resulting puzzle is not guaranteed to be solvable, but empirically
about 99.8% of them are solvable. Some have multiple solutions."""
values = dict((s, digits) for s in squares)
for s in shuffled(squares):
if not assign(values, s, random.choice(values[s])):
break
ds = [values[s] for s in squares if len(values[s]) == 1]
if len(ds) >= N and len(set(ds)) >= 8:
return ''.join(values[s] if len(values[s]) == 1 else '.' for s in squares)
return random_puzzle(N) ## Give up and make a new puzzle
grid1 = '003020600900305001001806400008102900700000008006708200002609500800203009005010300'
grid2 = '4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......'
hard1 = '.....6....59.....82....8....45........3........6..3.54...325..6..................'
def solve_hill_climbing(grid):
values, unfixed = initialize_hill_climbing(grid)
meilleur = values
ameliorable = True
conf = 0
paire = None
while ameliorable: # Tant qu'on peut réduire le nombre de conflits
hey = None
values= meilleur.copy()
conf = 0
paire = None
ameliorable = False
# Pour chaque paire qu'on peut changer
for s in unfixed:
for n in boxes[s]:
if s != n and n in unfixed:
option = values.copy()
option[s], option[n] = option[n], option[s]
# Calculer le nouveau nombre de conflits
maybe = sum([option[s] == option[p] for p in peers[s]])+ sum([option[n] == option[p] for p in peers[n]])- sum([values[s] == values[p] for p in peers[s]])- sum([values[n] == values[p] for p in peers[n]])
if maybe < conf:
# Si oui on pourra continuer
meilleur = option
conf = maybe
ameliorable = True
paire = (s, n)
return values
def initialize_hill_climbing(grid):
values = parse_grid(grid)
# Identifier celles qui sont fixees par defaut vs celles qui le sont pas
unfixed = {a for a in squares if len(values[a]) != 1}
for s in unfixed:
for i in range(1,10):
pos = True
for n in boxes[s]:
if values[n] == str(i):
pos = False
if pos:
values[s] = str(i)
return values, unfixed
# Compte le nombre de conflits entre deux valeurs
def conflits(values):
# Compte le nombre de fois ou le pair d'un élément a la même valeur
# que celui-ci et divise par 2 car chacun compté deux fois
return sum([sum([values[s] == values[p] for p in peers[s]]) for s in squares]) / 2
if __name__ == '__main__':
#solve_hill_climbing(grid1)
#solve_hill_climbing(grid2)
#test()
solve_all(from_file("100sudoku.txt"), "100sudoku", None)
solve_all(from_file("top95.txt"), "top95", None)
# solve_all(from_file("easy50.txt", '========'), "easy", None)
# solve_all(from_file("easy50.txt", '========'), "easy", None)
# solve_all(from_file("top95.txt"), "hard", None)
# solve_all(from_file("hardest.txt"), "hardest", None)
# solve_all([random_puzzle() for _ in range(99)], "random", 100.0)
## References used:
## http://www.scanraid.com/BasicStrategies.htm
## http://www.sudokudragon.com/sudokustrategy.htm
## http://www.krazydad.com/blog/2005/09/29/an-index-of-sudoku-strategies/
## http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/sudoku/