-
Notifications
You must be signed in to change notification settings - Fork 0
/
eva_knn_dist.py
76 lines (63 loc) · 2.32 KB
/
eva_knn_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
from models.facenet import Facenet
from utils.train_facenet import get_num_classes
from utils.detect_crop_face import facenet_input_preprocessing, detect_crop_face
from PIL import Image
from torch.nn import functional as F
from tqdm import tqdm
import dlib
import numpy as np
import os
device = 'cuda'
img_size = 256
dataset = 'facescrub'
t_model_bone = 'mobile_net'
eva_backbone = 'mobile_facenet'
facenet_path = 'trained_models/FaceScrub-BackboneMobileFaceNet-Epoch4-Train_Acc0.992-Val_Acc0.971.pth' # path to evaluation model
train_txt = '' # training data .txt (generate by annotation_face_train.py)
img_dir = 'gen_figures/DE_facescrub_mobile_M100_counter'
detector = dlib.get_frontal_face_detector()
num_classes = get_num_classes(train_txt)
face_shape = [160, 160]
all_id = 526
# 加载训练好的目标模型
test_model = Facenet(backbone=eva_backbone, num_classes=num_classes)
test_model.load_state_dict(torch.load(facenet_path, map_location='cpu'), strict=True)
test_model.to(device)
test_model.eval()
knn_sum = 0
mn_sum = 0
with open(train_txt,"r") as f:
lines = f.readlines()
count = 0
c_max = len(lines)-1
for label in tqdm(range(all_id)):
label_ = label
img_path = f'{img_dir}/de_label{label_}_best.jpg'
img = Image.open(img_path)
_, cropped = detect_crop_face(img, detector)
face_input = facenet_input_preprocessing(cropped,(160,160)).to(device)
tmp_dir = []
ct2 = 0
while int(lines[count].split(';')[0]) == label_:
if ct2 < 100:
tmp_dir.append((lines[count].split(';')[1]).split()[0])
ct2 += 1
count += 1
if count > c_max:
break
n_img = len(tmp_dir)
tmp_imgs = torch.zeros((n_img, 3, *face_shape)).to(device)
for j in range(n_img):
t_img = Image.open(tmp_dir[j])
tmp_imgs[j:j+1] = facenet_input_preprocessing(t_img,(160,160))
before_norm, _ = test_model.forward_feature(face_input)
before_norm_cp, _ = test_model.forward_feature(tmp_imgs)
dis_vecs = before_norm_cp - before_norm
t_norm = dis_vecs.norm(p=2, dim=1)
knn_sum += (t_norm.min()).item()
mn_sum += (t_norm.mean()).item()
knn_avg = knn_sum / all_id
mn_avg = mn_sum /all_id
print(f'{dataset} KNN Dist: {knn_avg};'
f'{dataset} MN Dist: {mn_avg};')