Skip to content

Codes for IJCAI2020 paper "One-Shot Neural Architecture Search via Novelty Driven Sampling"

Notifications You must be signed in to change notification settings

miaozhang0525/ENNAS_MASTER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Requirements

Python == 3.6.5, PyTorch == 1.0.1.post2

Pretrained models

  • Test on CIFAR10

  • model with 600 training epochs

cd CNN && python test.py --auxiliary --model_path ./ENNAS_CIFAR_RESULT/cifar10_600.pt

Expected result: 2.64% test error rate with 3.08M model params. The results could be found in ./ENNAS_CIFAR_RESULT/log.txt

  • model with 1000 training epochs
cd CNN && python test.py --auxiliary --model_path ./ENNAS_CIFAR_RESULT_1000/cifar10_1000.pt

  • Test on ImageNet
cd CNN && python test_imagenet.py --auxiliary --model_path ./ENNAS_ImageNet/model_best.pth.tar

###############################################

  • Test on PTB

  • ENNAS without PR

cd RNN && python test.py --model_path ./ENNAS_RESULT_ON_PTB/model.pt
  • ENNAS with PR
cd RNN && python test.py --model_path ./ENNAS_PR_RESULT_ON_PTB/model.pt
  • Test on WT2
cd RNN && python test.py --data /data/mzhang3/ENNAS_master/data/wikitext-2 --dropouth 0.15 --emsize 700 --nhidlast 700 --nhid 700 --wdecay 5e-7 --model_path ./ENNAS_WT2RESULT2/model.pt

Architecture search

cd CNN && python ENNAS.py    # for conv cells on CIFAR-10
cd RNN && python ENNAS.py    # for recurrent cells on PTB

Architecture evaluation

To evaluate our best cells by training from scratch, run

cd CNN && python train.py --auxiliary --cutout            # CIFAR-10
cd RNN && python train.py                                 # PTB
cd CNN && python train_imagenet.py --auxiliary            # ImageNet
cd RNN && python train.py --data ./data/wikitext-2 --dropouth 0.15 --emsize 700 --nhidlast 700 --nhid 700 --wdecay 5e-7  # WT2

Architecture Visualization

Package graphviz is required to visualize the learned cells

cd CNN && python visualize.py ENNAS
cd CNN && python visualize.py ENNAS_PR
cd RNN && python visualize.py ENNAS
cd RNN && python visualize.py ENNAS_PR

About

Codes for IJCAI2020 paper "One-Shot Neural Architecture Search via Novelty Driven Sampling"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published