Python == 3.6.5, PyTorch == 1.0.1.post2
-
Test on CIFAR10
-
model with 600 training epochs
cd CNN && python test.py --auxiliary --model_path ./ENNAS_CIFAR_RESULT/cifar10_600.pt
Expected result: 2.64% test error rate with 3.08M model params. The results could be found in ./ENNAS_CIFAR_RESULT/log.txt
- model with 1000 training epochs
cd CNN && python test.py --auxiliary --model_path ./ENNAS_CIFAR_RESULT_1000/cifar10_1000.pt
- Test on ImageNet
cd CNN && python test_imagenet.py --auxiliary --model_path ./ENNAS_ImageNet/model_best.pth.tar
###############################################
-
Test on PTB
-
ENNAS without PR
cd RNN && python test.py --model_path ./ENNAS_RESULT_ON_PTB/model.pt
- ENNAS with PR
cd RNN && python test.py --model_path ./ENNAS_PR_RESULT_ON_PTB/model.pt
- Test on WT2
cd RNN && python test.py --data /data/mzhang3/ENNAS_master/data/wikitext-2 --dropouth 0.15 --emsize 700 --nhidlast 700 --nhid 700 --wdecay 5e-7 --model_path ./ENNAS_WT2RESULT2/model.pt
cd CNN && python ENNAS.py # for conv cells on CIFAR-10
cd RNN && python ENNAS.py # for recurrent cells on PTB
To evaluate our best cells by training from scratch, run
cd CNN && python train.py --auxiliary --cutout # CIFAR-10
cd RNN && python train.py # PTB
cd CNN && python train_imagenet.py --auxiliary # ImageNet
cd RNN && python train.py --data ./data/wikitext-2 --dropouth 0.15 --emsize 700 --nhidlast 700 --nhid 700 --wdecay 5e-7 # WT2
Package graphviz is required to visualize the learned cells
cd CNN && python visualize.py ENNAS
cd CNN && python visualize.py ENNAS_PR
cd RNN && python visualize.py ENNAS
cd RNN && python visualize.py ENNAS_PR