-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfg.py
241 lines (184 loc) · 10.9 KB
/
cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
cfg.py
Simulation configuration for A1 model (using NetPyNE)
This file has sim configs as well as specification for parameterized values in netParams.py
Contributors: ericaygriffith@gmail.com, salvadordura@gmail.com
"""
from netpyne import specs
import pickle
cfg = specs.SimConfig()
#------------------------------------------------------------------------------
#
# SIMULATION CONFIGURATION
#
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Run parameters
#------------------------------------------------------------------------------
cfg.duration = 1.0*1e3 ## Duration of the sim, in ms
cfg.dt = 0.05 ## Internal Integration Time Step
cfg.verbose = 0 ## Show detailed messages
cfg.hParams['celsius'] = 37
cfg.createNEURONObj = 1
cfg.createPyStruct = 1
cfg.printRunTime = 0.1
cfg.connRandomSecFromList = False # set to false for reproducibility
cfg.cvode_active = False
cfg.cvode_atol = 1e-6
cfg.cache_efficient = True
cfg.printRunTime = 0.1
cfg.oneSynPerNetcon = False
cfg.includeParamsLabel = False
cfg.printPopAvgRates = [500, cfg.duration]
cfg.validateNetParams = True
#------------------------------------------------------------------------------
# Recording
#------------------------------------------------------------------------------
cfg.allpops = ['NGF1', 'IT2', 'SOM2', 'PV2', 'VIP2', 'NGF2', 'IT3', 'SOM3', 'PV3', 'VIP3', 'NGF3', 'ITP4', 'ITS4', 'SOM4', 'PV4', 'VIP4', 'NGF4', 'IT5A', 'CT5A', 'SOM5A', 'PV5A', 'VIP5A', 'NGF5A', 'IT5B', 'PT5B', 'CT5B', 'SOM5B', 'PV5B', 'VIP5B', 'NGF5B', 'IT6', 'CT6', 'SOM6', 'PV6', 'VIP6', 'NGF6', 'TC', 'TCM', 'HTC', 'IRE', 'IREM', 'TI', 'TIM', 'IC']
cfg.allCorticalPops = ['NGF1', 'IT2', 'SOM2', 'PV2', 'VIP2', 'NGF2', 'IT3', 'SOM3', 'PV3', 'VIP3', 'NGF3', 'ITP4', 'ITS4', 'SOM4', 'PV4', 'VIP4', 'NGF4', 'IT5A', 'CT5A', 'SOM5A', 'PV5A', 'VIP5A', 'NGF5A', 'IT5B', 'PT5B', 'CT5B', 'SOM5B', 'PV5B', 'VIP5B', 'NGF5B', 'IT6', 'CT6', 'SOM6', 'PV6', 'VIP6', 'NGF6']
cfg.allThalPops = ['TC', 'TCM', 'HTC', 'IRE', 'IREM', 'TI', 'TIM', 'IC']
alltypes = ['NGF1', 'IT2', 'PV2', 'SOM2', 'VIP2', 'ITS4', 'PT5B', 'TC', 'HTC', 'IRE', 'TI']
cfg.recordTraces = {'V_soma': {'sec':'soma', 'loc': 0.5, 'var':'v'}} ## Dict with traces to record
cfg.recordStim = False ## Seen in M1 cfg.py
cfg.recordTime = False ## SEen in M1 cfg.py
cfg.recordStep = 0.1 ## Step size (in ms) to save data
cfg.recordLFP = [[100, y, 100] for y in range(0, 2000, 100)]
cfg.recordLFP = [[x, 1000, 100] for x in range(100, 2200, 200)]
#cfg.saveLFPPops = cfg.allCorticalPops #, "IT3", "SOM3", "PV3", "VIP3", "NGF3", "ITP4", "ITS4", "IT5A", "CT5A", "IT5B", "PT5B", "CT5B", "IT6", "CT6"]
# cfg.recordDipole = True
# cfg.saveDipoleCells = ['all']
# cfg.saveDipolePops = cfg.allpops
#------------------------------------------------------------------------------
# Saving
#------------------------------------------------------------------------------
cfg.simLabel = 'v31_tune3'
cfg.saveFolder = 'data/v31_manualTune' ## Set file output name
cfg.savePickle = True ## Save pkl file
cfg.saveJson = False ## Save json file
cfg.saveDataInclude = ['simData', 'simConfig', 'netParams', 'net']
cfg.backupCfgFile = None
cfg.gatherOnlySimData = False
cfg.saveCellSecs = True
cfg.saveCellConns = False
#------------------------------------------------------------------------------
# Analysis and plotting
#-----------------------------------------------------------------------------
#
# cfg.analysis['plotTraces'] = {'include': [(pop, 0) for pop in cfg.allpops], 'oneFigPer': 'trace', 'overlay': True, 'saveFig': True, 'showFig': False, 'figSize':(12,8)} #[(pop,0) for pop in alltypes] ## Seen in M1 cfg.py (line 68)
cfg.analysis['plotRaster'] = {'include': cfg.allpops, 'saveFig': True, 'showFig': False, 'popRates': True, 'orderInverse': True, 'timeRange': [0,cfg.duration], 'figSize': (14,12), 'lw': 0.3, 'markerSize': 3, 'marker': '.', 'dpi': 300} ## Plot a raster
# cfg.analysis['plotSpikeStats'] = {'stats': ['rate'], 'figSize': (6,12), 'timeRange': [0, 2500], 'dpi': 300, 'showFig': 0, 'saveFig': 1}
cfg.analysis['plotLFP'] = {'plots': ['timeSeries'], 'electrodes': [10], 'maxFreq': 80, 'figSize': (8,4), 'saveData': False, 'saveFig': True, 'showFig': False} # 'PSD', 'spectrogram'
#cfg.analysis['plotDipole'] = {'saveFig': True}
#cfg.analysis['plotEEG'] = {'saveFig': True}
#------------------------------------------------------------------------------
# Cells
#------------------------------------------------------------------------------
cfg.weightNormThreshold = 5.0 # maximum weight normalization factor with respect to the soma
cfg.weightNormScaling = {'NGF_reduced': 1.0, 'ITS4_reduced': 1.0}
#------------------------------------------------------------------------------
# Synapses
#------------------------------------------------------------------------------
cfg.AMPATau2Factor = 1.0
cfg.synWeightFractionEE = [0.5, 0.5] # E->E AMPA to NMDA ratio
cfg.synWeightFractionEI = [0.5, 0.5] # E->I AMPA to NMDA ratio
cfg.synWeightFractionIE = [0.9, 0.1] # SOM -> E GABAASlow to GABAB ratio
cfg.synWeightFractionII = [0.9, 0.1] # SOM -> E GABAASlow to GABAB ratio
cfg.synWeightFractionSOME = [0.9, 0.1] # SOM -> E GABAASlow to GABAB ratio
cfg.synWeightFractionNGF = [0.5, 0.5] # NGF GABAA to GABAB ratio
cfg.synWeightFractionENGF = [0.834, 0.166] # NGF AMPA to NMDA ratio
#------------------------------------------------------------------------------
# Network
#------------------------------------------------------------------------------
cfg.singleCellPops = False
cfg.singlePop = ''
cfg.removeWeightNorm = False
cfg.scale = 1.0
cfg.sizeY = 2000.0
cfg.sizeX = 200.0
cfg.sizeZ = 200.0
cfg.scaleDensity = 1.0 # Should be 1.0 unless need lower cell density for test simulation or visualization
#------------------------------------------------------------------------------
# Connectivity
#------------------------------------------------------------------------------
# Cortical
cfg.addConn = 1
cfg.EEGain = 1.0
cfg.EIGain = 1.0
cfg.IEGain = 1.0
cfg.IIGain = 1.0
## E/I->E/I layer weights (L1-3, L4, L5, L6)
cfg.EELayerGain = {'1': 1.0, '2': 1.0, '3': 1.0, '4': 1.0 , '5A': 1.0, '5B': 1.0, '6': 1.0}
cfg.EILayerGain = {'1': 1.0, '2': 1.0, '3': 1.0, '4': 1.0 , '5A': 1.0, '5B': 1.0, '6': 1.0}
cfg.IELayerGain = {'1': 1.0, '2': 1.0, '3': 1.0, '4': 1.0 , '5A': 1.0, '5B': 1.0, '6': 1.0}
cfg.IILayerGain = {'1': 1.0, '2': 1.0, '3': 1.0, '4': 1.0 , '5A': 1.0, '5B': 1.0, '6': 1.0}
## E->I by target cell type
cfg.EICellTypeGain= {'PV': 1.0, 'SOM': 1.0, 'VIP': 1.0, 'NGF': 1.0}
## I->E by target cell type
cfg.IECellTypeGain= {'PV': 1.0, 'SOM': 1.0, 'VIP': 1.0, 'NGF': 1.0}
# Thalamic
cfg.addIntraThalamicConn = 1.0
cfg.addIntraThalamicConn = 1.0
cfg.addCorticoThalamicConn = 1.0
cfg.addThalamoCorticalConn = 1.0
cfg.thalamoCorticalGain = 1.0
cfg.intraThalamicGain = 1.0
cfg.corticoThalamicGain = 1.0
cfg.addSubConn = 1
## full weight conn matrix
with open('conn/conn.pkl', 'rb') as fileObj: connData = pickle.load(fileObj)
cfg.wmat = connData['wmat']
#------------------------------------------------------------------------------
# Background inputs
#------------------------------------------------------------------------------
cfg.addBkgConn = 1
cfg.noiseBkg = 1.0 # firing rate random noise
cfg.delayBkg = 5.0 # (ms)
cfg.startBkg = 0 # start at 0 ms
# cfg.weightBkg = {'IT': 12.0, 'ITS4': 0.7, 'PT': 14.0, 'CT': 14.0,
# 'PV': 28.0, 'SOM': 5.0, 'NGF': 80.0, 'VIP': 9.0,
# 'TC': 1.8, 'HTC': 1.55, 'RE': 9.0, 'TI': 3.6}
cfg.rateBkg = {'exc': 40, 'inh': 40}
## options to provide external sensory input
#cfg.randomThalInput = True # provide random bkg inputs spikes (NetStim) to thalamic populations
cfg.EbkgThalamicGain = 4.0
cfg.IbkgThalamicGain = 4.0
cfg.cochlearThalInput = False #{'numCells': 200, 'freqRange': [9*1e3, 11*1e3], 'toneFreq': 10*1e3, 'loudnessDBs': 50} # parameters to generate realistic auditory thalamic inputs using Brian Hears
# parameters to generate realistic cochlear + IC input ; weight =unitary connection somatic EPSP (mV)
cfg.ICThalInput = {} #'file': 'data/ICoutput/ICoutput_CF_9600_10400_wav_01_ba_peter.mat',
#'startTime': 500, 'weightE': 0.5, 'weightI': 0.5, 'probE': 0.12, 'probI': 0.26, 'seed': 1}
#------------------------------------------------------------------------------
# Current inputs
#------------------------------------------------------------------------------
cfg.addIClamp = 0
#------------------------------------------------------------------------------
# NetStim inputs
#------------------------------------------------------------------------------
cfg.addNetStim = 0
## LAYER 1
cfg.NetStim1 = {'pop': 'NGF1', 'ynorm': [0,2.0], 'sec': 'soma', 'loc': 0.5, 'synMech': ['AMPA'], 'synMechWeightFactor': [1.0], 'start': 0, 'interval': 1000.0/60.0, 'noise': 0.0, 'number': 0.0, 'weight': 10.0, 'delay': 0}
# ## LAYER 2
# cfg.NetStim2 = {'pop': 'IT2', 'ynorm': [0,1], 'sec': 'soma', 'loc': 0.5, 'synMech': ['AMPA'], 'synMechWeightFactor': [1.0], 'start': 0, 'interval': 1000.0/60.0, 'noise': 0.0, 'number': 60.0, 'weight': 10.0, 'delay': 0}
cfg.tune = {}
#------------------------------------------------------------------------------
# Set the baseline model parameters (remove this to use custom parameters)
#------------------------------------------------------------------------------
import json
filename = '../data/v34_batch25/trial_2142/trial_2142_cfg.json'
with open(filename, 'rb') as f:
cfgLoad = json.load(f)['simConfig']
updateParams = ['EEGain', 'EIGain', 'IEGain', 'IIGain',
('EICellTypeGain', 'PV'), ('EICellTypeGain', 'SOM'), ('EICellTypeGain', 'VIP'), ('EICellTypeGain', 'NGF'),
('IECellTypeGain', 'PV'), ('IECellTypeGain', 'SOM'), ('IECellTypeGain', 'VIP'), ('IECellTypeGain', 'NGF'),
('EILayerGain', '1'), ('IILayerGain', '1'),
('EELayerGain', '2'), ('EILayerGain', '2'), ('IELayerGain', '2'), ('IILayerGain', '2'),
('EELayerGain', '3'), ('EILayerGain', '3'), ('IELayerGain', '3'), ('IILayerGain', '3'),
('EELayerGain', '4'), ('EILayerGain', '4'), ('IELayerGain', '4'), ('IILayerGain', '4'),
('EELayerGain', '5A'), ('EILayerGain', '5A'), ('IELayerGain', '5A'), ('IILayerGain', '5A'),
('EELayerGain', '5B'), ('EILayerGain', '5B'), ('IELayerGain', '5B'), ('IILayerGain', '5B'),
('EELayerGain', '6'), ('EILayerGain', '6'), ('IELayerGain', '6'), ('IILayerGain', '6'),
'thalamoCorticalGain', 'intraThalamicGain', 'EbkgThalamicGain', 'IbkgThalamicGain', 'wmat']
for p in updateParams:
if isinstance(p, tuple):
cfg.__dict__[p[0]].update({p[1]: cfgLoad[p[0]][p[1]]})
else:
cfg.__dict__.update({p: cfgLoad[p]})