-
Notifications
You must be signed in to change notification settings - Fork 6
/
preprocessing.py
591 lines (495 loc) · 20.7 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# global
import string
from typing import List, Tuple
import numpy as np
import pandas as pd
import re
import nltk
from sklearn.utils import resample
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import RegexpTokenizer
import tensorflow as tf
from keras.layers import TextVectorization
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
# local
from utils import Doc2VecModel
punct = string.punctuation
stemmer = nltk.stem.PorterStemmer()
eng_stopwords = nltk.corpus.stopwords.words("english")
class Preprocessor:
"""Responsible for preprocessing case facts."""
def __init__(self) -> None:
pass
def _nltk_tokenizer(self, text: str) -> List[str]:
"""
Tokenize a given `text` using the RegexpTokenizer from the nltk library.
Parameters:
-----------
- text : str
A string containing the text to be tokenized.
Returns:
--------
- tokens : List[str]
A list of tokens generated by the tokenizer.
"""
tokenizer = RegexpTokenizer(r"\w+")
tokens = tokenizer.tokenize(text)
return tokens
def _tokenize_text(self, text_column: pd.Series) -> pd.Series:
"""Splitting `text_column` into tokens.
Parameters:
------------
- text_column : pd.Series
Contains text that needs to be tokenized.
Returns:
--------
- tokenized_text : pd.Series
Contains tokenized version of `text_column`.
"""
tokenized_text = text_column.apply(self._nltk_tokenizer)
return tokenized_text
def _convert_to_tagged_document(
self, text_column: pd.Series
) -> Tuple[List[str], List[TaggedDocument]]:
"""
Convert `text_column` of specific to TaggedDocuments.
Parameters:
------------
- column : pd.Series
Contains the list of tokens of each fact.
Returns:
--------
A tuble containing the following items:
- tokens_list : list[str]
Contains all tokens of each case in the `text_column`.
- tagged_docs : list[TaggedDocument]
Contains TaggedDocument object for each case.
"""
tokens_list = text_column.to_list()
tagged_docs = [TaggedDocument(t, [str(i)])
for i, t in enumerate(tokens_list)]
return tokens_list, tagged_docs
def _vectorize_text(
self, doc2vec_model: Doc2Vec, df: pd.Series, tokens_list: List[str]
) -> pd.DataFrame:
"""
Convert values of `tokens_list` to a vector.
Parameters:
-----------
- doc2vec_model : Doc2Vev
Trained Doc2Vec model.
- df : pd.Series
This will use only to get its indicies for the new generated dataframe.
- tokens_list : List[str]
Contains all tokens of each case.
Returns:
--------
- text_vectors_df : pd.DataFrame
Contains the vector representaion for each case.
"""
text_vectors = [doc2vec_model.infer_vector(doc) for doc in tokens_list]
text_vectors_df = pd.DataFrame(text_vectors, index=df.index)
return text_vectors_df
def _anonymize_case_facts(
self, first_party_name: str, second_party_name: str, facts: str
) -> str:
"""
Anonymize case facts by replacing its party names with "_PARTY_" tag.
Parameters:
------------
- first_party_name : str
Represents first party name or petitioner name.
- second_party_name : str
Represents second party name or respondent name.
- facts : str
Represents case facts.
Returns:
--------
- anonymized_facts : str
An anonymized version of `facts`.
"""
# remove any commas and any non alphabet characters
first_party_name = re.sub(r"[\,+]", " ", first_party_name)
first_party_name = re.sub(r"[^a-zA-Z]", " ", first_party_name)
second_party_name = re.sub(r"[\,+]", " ", second_party_name)
second_party_name = re.sub(r"[^a-zA-Z]", " ", second_party_name)
for name in first_party_name.split():
facts = re.sub(name, " _PARTY_ ", facts)
for name in second_party_name.split():
facts = re.sub(name, " _PARTY_ ", facts)
# replace any consecutive _PARTY_ tags with only one _PARTY_ tag.
regex_continous_tags = r"(_PARTY_\s+){2,}"
anonymized_facts = re.sub(regex_continous_tags, " _PARTY_ ", facts)
# remove ant consecutive spaces
anonymized_facts = re.sub(r"\s+", " ", anonymized_facts)
return anonymized_facts
def _preprocess_text(self, text: str) -> str:
"""
Preprocessing & cleaning `text` including:
- lowercasing
- removing quotation marks
- removing digits
- removing punctuation
- removing brackets, braces, and paranthesis
- removeing stopwords
- stemming tokens
Parameters:
------------
- text : str
Text need to be processed (cleaned).
Returns:
--------
- processed_text : str
A preprocessed version of `text`.
"""
text = text.lower()
# remove quotation marks
text = re.sub(r"\'", "", text)
# remove digits
text = re.sub(r"\d+", "", text)
# remove punctuation but with keeping '_' letter
text = "".join([ch for ch in text if (ch == "_") or (ch not in punct)])
# remove brackets, braces, and parantheses
text = re.sub(r"[\[\]\(\)\{\}]+", " ", text)
tokens = nltk.word_tokenize(text)
# remove stopwords and stemming tokens
tokens = [stemmer.stem(token)
for token in tokens if token not in eng_stopwords]
# convert tokens back to string
processed_text = " ".join(tokens)
return processed_text
def convert_text_to_vectors_doc2vec(
self,
text_column: pd.Series,
train: bool = True,
embeddings_doc2vec: Doc2Vec = None,
) -> Tuple[Doc2Vec, pd.DataFrame] | pd.DataFrame:
"""
Converting `text_column` to vectors using `Doc2Vec` model
Parameters:
------------
- text_column : pd.Series
Contains the case facts.
- train : bool, optional
Defines whether the model will be trained or not. (if True, Doc2Vec will be trained |
else, Doc2Vec will used the passed `embeddings_Doc2Vec`). (Default is True).
- embeddings_doc2vec : Doc2Vec, optional
Trained Doc2Vec model will be used for generating embeddings of `text_column` if
`train` is False. (Default is None).
Returns:
--------
1. A tuple contains the following:
- embeddings_doc2vec : Doc2Vec
Trained Doc2Vec model.
- text_vectors_df : pd.DataFrame
A DataFrame contains `text_column` vectors if `train` is True.
2. text_vectors_df : pd.DataFrame
A DataFrame contains `text_column` vectors if `train` is False.
Raises:
-------
- AssertionError
If train is False and `embeddings_doc2vec` is None.
- AssertionError
If train is False and `embedding_doc2vec` is not an instance of Doc2Vec
"""
tokenized_text = self._tokenize_text(text_column)
tokens_list, tagged_docs = self._convert_to_tagged_document(
tokenized_text)
if train:
doc2vec_model = Doc2VecModel()
embeddings_doc2vec = doc2vec_model.train_doc2vec_embeddings_model(
tagged_docs
)
text_vectors_df = self._vectorize_text(
embeddings_doc2vec, text_column, tokens_list
)
return embeddings_doc2vec, text_vectors_df
assert (
embeddings_doc2vec is not None
), "`embedding_doc2vec` argument must be not None."
assert isinstance(
embeddings_doc2vec, Doc2Vec
), "`embedding_doc2vec` argument must be an instance of Doc2Vec to infer vectors."
text_vectors_df = self._vectorize_text(
embeddings_doc2vec, text_column, tokens_list
)
return text_vectors_df
def convert_text_to_vectors_tf_idf(
self,
text_column: pd.Series,
ngrams: int = 2,
max_tokens: int = 10000,
output_mode: str = "tf-idf",
train: bool = True,
text_vectorizer: TextVectorization = None,
) -> Tuple[TextVectorization, tf.Tensor] | tf.Tensor:
"""
Converting `text_column` to vectors using `TextVectorization` layer.
Parameters:
------------
- text_column : pd.Series
Contains the case facts.
- ngrams : int, optional
Defines the number of n-gram (Default is 2).
- max_tokens : int, optional
Defines the number of max_tokens of `text_vectorizer` (Default is 10,000).
- output_mode : str, optional
Represents the output vectors type whether it is "tfi-df" or "binary" or "count"
(Default is "tf-idf").
- train : bool, optional
Defines whether the model will be trained or not. (if True, TextVectorization
will be trained, else, TextVectorization will used the passed `text_vectorizer`).
(Default is True).
- text_vectorizer : TextVectorization, optional
Trained TextVectorization layer will be used for generating embeddings of
`text_column` if `train` is False. (Default is None).
Returns:
--------
- if `train` == True:
A tuple contains the following:
- text_vectorizer : TextVectorization
Trained TextVectorization layer.
- text_vectors : tf.Tensor
A Tensor contains `text_column` training vectors.
- otherwise:
text_vectors : tf.Tensor
A Tensor contains `text_column` testing vectors.
Raises:
-------
- AssertionError
If train is False and `text_vectorizer` is None.
- AssertionError
If train is False and `text_vectorizer` is not an instance of TextVectorization.
"""
if train:
text_vectorizer = TextVectorization(
ngrams=ngrams, max_tokens=max_tokens, output_mode=output_mode
)
text_vectorizer.adapt(text_column)
text_vectors = text_vectorizer(text_column)
return text_vectorizer, text_vectors
assert (
text_vectorizer is not None
), "`text_vectorizer` argument must be not None."
assert isinstance(
text_vectorizer, TextVectorization
), "`text_vectorizer` argument must be an instance of TextVectorization to infer vectors."
text_vectors = text_vectorizer(text_column)
return text_vectors
def convert_text_to_vectors_cnn(
self,
text_column: pd.Series,
max_tokens: int = 2000,
output_sequence_length: int = 500,
output_mode: str = "int",
train: bool = True,
text_vectorizer: TextVectorization = None,
) -> Tuple[TextVectorization, tf.Tensor] | tf.Tensor:
"""
Converting `text_column` to vectors using `TextVectorization` layer.
Parameters:
------------
- text_column : pd.Series
Contains the case facts.
- max_tokens : int, optional
Defines the number of max_tokens of `text_vectorizer` (Default is 2000).
- output_sequence_length : int, optional
Represents the dimensions of the output vector (Default is 500).
- output_mode : str, optional
Represents the output vectors type whether it is "int" or "binary" or "tfi-df".
- train : bool, optional
Defines whether the model will be trained or not. (if True,
TextVectorization will be trained | else, TextVectorization will used the
passed `text_vectorizer`). (Default is True).
- text_vectorizer : TextVectorization, optional
Trained TextVectorization layer will be used for generating embeddings of
`text_column` if `train` is False. (Default is None).
Returns:
--------
- if `train` == True:
A tuple contains the following:
- text_vectorizer : TextVectorization
Trained TextVectorization layer.
- text_vectors : tf.Tensor
A Tensor contains `text_column` training vectors.
- otherwise:
text_vectors : tf.Tensor
A Tensor contains `text_column` testing vectors.
Raises:
-------
- AssertionError
If train is False and `text_vectorizer` is None.
- AssertionError
If train is False and `text_vectorizer` is not an instance of TextVectorization.
"""
if train:
text_vectorizer = TextVectorization(
max_tokens=max_tokens,
output_mode=output_mode,
output_sequence_length=output_sequence_length,
)
text_vectorizer.adapt(text_column)
text_vectors = text_vectorizer(text_column)
return text_vectorizer, text_vectors
assert (
text_vectorizer is not None
), "`text_vectorizer` argument must be not None."
assert isinstance(
text_vectorizer, TextVectorization
), "`text_vectorizer` argument must be an instance of TextVectorization to infer vectors."
text_vectors = text_vectorizer(text_column)
return text_vectors
def convert_text_to_vectors_glove(
self,
text_column: pd.Series,
train: bool = True,
glove_tokenizer: Tokenizer = None,
vocab_size: int = 1000,
oov_token: str = "<OOV>",
max_length: int = 50,
padding_type: str = "post",
truncation_type: str = "post",
) -> Tuple[Tokenizer, np.ndarray] | np.ndarray:
"""
Converting `text_column` to vectors using `glove_tokenizer`.
Parameters:
------------
- text_column : pd.Series
Contains the case facts.
- train : bool, optional
Defines whether the model will be trained or not. (if True,
Tokenizer will be trained | else, Tokenizer will used the
passed `glove_tokenizer`). (Default is True).
- glove_tokenizer : Tokenizer, optional
Trained Tokenizer layer will be used for generating embeddings of
`text_column` if `train` is False. (Default is None).
- vocab_size : int, optional
Represents the number of supported vocabulary of the Tokenizer,
any token not in this vocabulary will be treated as an out-of-vocabulary
token(OOV). (Default is 1000).
- oov_tokens : str, optional
Represents the token of an out-of-vocabulary token (Default is "<OOV>").
- max_length : int, optional
Defins the output vector's dimension. (Default is 50).
- padding_type : str, optional
Defines the padding type of the vectors, if the vector size is less than
`max_length`, the rest of the `max_length` will be padded with 0 (Default is "post").
- truncation_type : str, optional
Defines the truncation type of the vectors, if the vector size is more than
`max_length`, the extra of the `max_length` will be truncated (Default is "post").
Returns:
--------
- if `train` == True:
A tuple contains the following:
- glove_tokenizer : Tokenizer
Trained Tokenizer layer.
- text_padded : np.ndarray
An array contains `text_column` vectors.
- otherwise:
text_padded : np.ndarray
An array contains `text_column` vectors.
Raises:
-------
- AssertionError
If train is False and `glove_tokenizer` is None.
- AssertionError
If train is False and `glove_tokenizer` is not instance of Tokenizer.
"""
if train:
glove_tokenizer = Tokenizer(
num_words=vocab_size, oov_token=oov_token)
glove_tokenizer.fit_on_texts(text_column)
text_sequences = glove_tokenizer.texts_to_sequences(text_column)
text_padded = pad_sequences(
text_sequences,
maxlen=max_length,
padding=padding_type,
truncating=truncation_type,
)
return glove_tokenizer, text_padded
assert (
glove_tokenizer is not None
), "`glove_tokenizer` argument must be not None."
assert isinstance(
glove_tokenizer, Tokenizer
), "`glove_tokenizer` argument must be an instance of Tokenizer."
text_sequences = glove_tokenizer.texts_to_sequences(text_column)
text_padded = pad_sequences(
text_sequences,
maxlen=max_length,
padding=padding_type,
truncating=truncation_type,
)
return text_padded
def balance_data(self, X_train: pd.Series, y_train: pd.Series) -> pd.DataFrame:
"""
Balancing `X_train` and `y_train` to distribute the targets in `y_train` equally.
Parameters:
------------
- text_column : pd.Series
Contains the case facts.
- y_train : pd.Series
Contains the training targets.
Returns:
--------
- shuffled_balanced_df : pd.DataFrame
Contains the new balanced dataframe with shuffling indicies.
"""
df = pd.concat([X_train, y_train], axis=1)
first_party = df[df["winner_index"] == 0]
second_party = df[df["winner_index"] == 1]
upsample_second_party = resample(
second_party, replace=True, n_samples=len(first_party), random_state=42
)
upsample_df = pd.concat([upsample_second_party, first_party])
shuffled_indices = np.arange(upsample_df.shape[0])
np.random.shuffle(shuffled_indices)
shuffled_balanced_df = upsample_df.iloc[shuffled_indices, :]
return shuffled_balanced_df
def anonymize_data(
self,
first_party_names: pd.Series,
second_party_names: pd.Series,
text_column: pd.Series,
) -> pd.Series:
"""
Anonymize `text_column` by replacing `first_party_names` and
`second_party_names` wit "_PARTY_" tag.
Parameters:
------------
- first_party_names : pd.Series
Contains all first party names needed to be anonymized.
- second_party_names : pd.Series
Contains all second party names needed to be anonymized.
- text_column : pd.Series
Contains all texts needed to be anonymized.
Returns:
--------
- all_anonyimzed_facts : pd.Series
Contains anonymized version of `text_column`.
"""
all_anonymized_facts = []
for i in range(text_column.shape[0]):
facts = text_column.iloc[i]
first_party_name = first_party_names.iloc[i]
second_party_name = second_party_names.iloc[i]
anonymized_facts = self._anonymize_case_facts(
first_party_name, second_party_name, facts
)
all_anonymized_facts.append(anonymized_facts)
return pd.Series(all_anonymized_facts)
def preprocess_data(self, text_column: pd.Series) -> pd.Series:
"""
Preprocessing & cleaning all texts in `text_column`.
Parameters:
------------
- text_column : pd.Series
Contains all case facts.
Returns:
--------
- preprocessed_text : pd.Series
Contains all texts after being processed.
"""
preprocessed_text = text_column.apply(self._preprocess_text)
return preprocessed_text