-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.yaml
52 lines (40 loc) · 1.75 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# @package _global_
# specify here default configuration
# order of defaults determines the order in which configs override each other
defaults:
- _self_
- data: upgrade_energy.yaml #upgrade_energy.yaml # OSCnext_norminal_energy.yaml #mnist.yaml
- model: simple_transformer_encoder_pooling.yaml #simple_transformer_encoder_pooling.yaml # mnist.yaml
- callbacks: default.yaml
- logger: wandb # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
- trainer: default.yaml
- paths: default.yaml
- extras: default.yaml
- hydra: default.yaml
# experiment configs allow for version control of specific hyperparameters
# e.g. best hyperparameters for given model and datamodule
- experiment: null
# config for hyperparameter optimization
- hparams_search: null
# optional local config for machine/user specific settings
# it's optional since it doesn't need to exist and is excluded from version control
- optional local: default.yaml
# debugging config (enable through command line, e.g. `python train.py debug=default)
- debug: null
# task name, determines output directory path
task_name: "train"
# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
tags: ["dev"]
# set False to skip model training
train: True
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: True
# compile model for faster training with pytorch 2.0
compile: False
# simply provide checkpoint path to resume training
ckpt_path: null
# seed for random number generators in pytorch, numpy and python.random
seed: null