-
Notifications
You must be signed in to change notification settings - Fork 153
/
ColumnExt.scala
393 lines (377 loc) · 9.96 KB
/
ColumnExt.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
package com.github.mrpowers.spark.daria.sql
import org.apache.spark.sql.Column
import org.apache.spark.sql.functions._
/**
* Additional methods for the Spark Column class
*
* @groupname expr_ops Expression operators
* @groupname df_ops DataFrame functions
* @groupname Ungrouped Support functions for DataFrames
*
* @since 0.0.1
*/
object ColumnExt {
implicit class ColumnMethods(col: Column) {
/**
* Chains column functions
* //The chain method takes a org.apache.spark.sql.functions function as an argument and can be used as follows:
* {{{
* val wordsDf = Seq(
* ("Batman "),
* (" CATWOMAN"),
* (" pikachu ")
* ).toDF("word")
*
* val actualDf = wordsDf.withColumn(
* "cleaned_word",
* col("word").chain(lower).chain(trim)
* )
*
* actualDf.show()
* +----------+------------+
* | word|cleaned_word|
* +----------+------------+
* | Batman | batman|
* | CATWOMAN| catwoman|
* | pikachu | pikachu|
* +----------+------------+
* }}}
*
* @group expr_ops
*/
def chain(colMethod: (Column => Column)): Column = {
colMethod(col)
}
/**
* Chains UDFs
* {{{
* def appendZ(s: String): String = {
* s + "Z"
* }
*
* spark.udf.register("appendZUdf", appendZ _)
*
* def prependA(s: String): String = {
* "A" + s
* }
*
* spark.udf.register("prependAUdf", prependA _)
*
* val hobbiesDf = Seq(
* ("dance"),
* ("sing")
* ).toDF("word")
*
* val actualDf = hobbiesDf.withColumn(
* "fun",
* col("word").chainUDF("appendZUdf").chainUDF("prependAUdf")
* )
*
* actualDf.show()
* +-----+-------+
* | word| fun|
* +-----+-------+
* |dance|AdanceZ|
* | sing| AsingZ|
* +-----+-------+
* }}}
*
* @group expr_ops
*/
def chainUDF(udfName: String, cols: Column*): Column = {
callUDF(
udfName,
col +: cols: _*
)
}
/**
* Like between, but geq when upper bound is null and leq when lower bound is null
* The built in `between` doesn't work well when one of the bounds is undefined. `nullBetween` is more useful when you have "less than or equal to" or "greater than or equal to" logic embedded in your upper and lower bounds. For example, if the lower bound is `null` and the upper bound is `15`, `nullBetween` will interpret that as "all values below 15".
*
* Let's compare the `between` and `nullBetween` methods with a code snipped and the outputted DataFrame.
*
* {{{
* val actualDF = sourceDF.withColumn(
* "between",
* col("age").between(col("lower_bound"), col("upper_bound"))
* ).withColumn(
* "nullBetween",
* col("age").nullBetween(col("lower_bound"), col("upper_bound"))
* )
* +-----------+-----------+---+-------+-----------+
* |lower_bound|upper_bound|age|between|nullBetween|
* +-----------+-----------+---+-------+-----------+
* | 10| 15| 11| true| true|
* | 17| null| 94| null| true|
* | null| 10| 5| null| true|
* +-----------+-----------+---+-------+-----------+
* }}}
*
* @group expr_ops
*/
def nullBetween(lowerCol: Column, upperCol: Column): Column = {
when(
lowerCol.isNull && upperCol.isNull,
false
).otherwise(
when(
col.isNull,
false
).otherwise(
when(
lowerCol.isNull && upperCol.isNotNull && col.leq(upperCol),
true
).otherwise(
when(
lowerCol.isNotNull && upperCol.isNull && col.geq(lowerCol),
true
).otherwise(
col.between(
lowerCol,
upperCol
)
)
)
)
)
}
/**
* Returns true if the current expression is true
* Returns false if the current expression is null
*
* @group expr_ops
*/
def isTrue: Column = {
when(
col.isNull,
false
).otherwise(col === true)
}
/**
* Returns true if the col is false
* Returns false if the current expression is false
*
* @group expr_ops
*/
def isFalse: Column = {
when(
col.isNull,
false
).otherwise(col === false)
}
/**
* Returns true if the col is false or null
* `isFalsy` returns `true` if a column is `null` or `false` and `false` otherwise.
*
* Suppose you start with the following `sourceDF`:
*
* {{{
* +------+
* |is_fun|
* +------+
* | true|
* | false|
* | null|
* +------+
* }}}
*
* Run the `isFalsy` method:
*
* {{{
* val actualDF = sourceDF.withColumn("is_fun_falsy", col("is_fun").isFalsy)
* }}}
*
* Here are the contents of `actualDF`:
*
* {{{
* +------+------------+
* |is_fun|is_fun_falsy|
* +------+------------+
* | true| false|
* | false| true|
* | null| true|
* +------+------------+
* }}}
*
* @group expr_ops
*/
def isFalsy: Column = {
when(
col.isNull || col === lit(false),
true
).otherwise(false)
}
/**
* Returns true if the col is not false or null
* `isTruthy` returns `false` if a column is `null` or `false` and `true` otherwise.
*
* Suppose you start with the following `sourceDF`:
*
* {{{
* +------+
* |is_fun|
* +------+
* | true|
* | false|
* | null|
* +------+
* }}}
*
* Run the `isTruthy` method:
*
* {{{
* val actualDF = sourceDF.withColumn("is_fun_truthy", col("is_fun").isTruthy)
* }}}
*
* Here are the contents of `actualDF`:
*
* {{{
* +------+-------------+
* |is_fun|is_fun_truthy|
* +------+-------------+
* | true| true|
* | false| false|
* | null| false|
* +------+-------------+
* }}}
*
* @group expr_ops
*/
def isTruthy: Column = {
!col.isFalsy
}
/**
* Returns true if the col is null or a blank string
* The `isNullOrBlank` method returns `true` if a column is `null` or `blank` and `false` otherwise.
*
* Suppose you start with the following `sourceDF`:
*
* {{{
* +-----------+
* |animal_type|
* +-----------+
* | dog|
* | null|
* | ""|
* | " "|
* +-----------+
* }}}
*
* Run the `isNullOrBlank` method:
*
* {{{
* val actualDF = sourceDF.withColumn(
* "animal_type_is_null_or_blank",
* col("animal_type").isNullOrBlank
* )
* }}}
*
* Here are the contents of `actualDF`:
*
* {{{
* +-----------+----------------------------+
* |animal_type|animal_type_is_null_or_blank|
* +-----------+----------------------------+
* | dog| false|
* | null| true|
* | ""| true|
* | " "| true|
* +-----------+----------------------------+
* }}}
*
* @group expr_ops
*/
def isNullOrBlank: Column = {
col.isNull || trim(col) === ""
}
/**
* Returns true if the col is not null or a blank string
*
* The `isNotNullOrBlank` method returns `true` if a column is not `null` or `blank` and `false` otherwise.
* Suppose you start with the following `sourceDF`:
*
* +-------------+
* |employee_name|
* +-------------+
* | John|
* | null|
* | ""|
* | " "|
* +-------------+
*
* Run the `isNotNullOrBlank` method:
*
* {{{
* val actualDF = sourceDF.withColumn(
* "employee_name_is_not_null_or_blank",
* col("employee_name").isNotNullOrBlank
* )
* }}}
*
* Here are the contents of `actualDF`:
*
* +-------------+----------------------------------+
* |employee_name|employee_name_is_not_null_or_blank|
* +-------------+----------------------------------+
* | John| true|
* | null| false|
* | ""| false|
* | " "| false|
* +-------------+----------------------------------+
*
* @group expr_ops
*/
def isNotNullOrBlank: Column = {
!col.isNullOrBlank
}
/**
* Returns true if the col is not in a list of elements
* The `isNotIn` method returns `true` if a column element is not in a list and `false` otherwise. It's the opposite of the `isin` method.
*
* Suppose you start with the following `sourceDF`:
*
* {{{
* +-----+
* |stuff|
* +-----+
* | dog|
* |shoes|
* |laces|
* | null|
* +-----+
* }}}
*
* Run the `isNotIn` method:
*
* {{{
* val footwearRelated = Seq("laces", "shoes")
*
* val actualDF = sourceDF.withColumn(
* "is_not_footwear_related",
* col("stuff").isNotIn(footwearRelated: _*)
* )
* }}}
*
* Here are the contents of `actualDF`:
*
* {{{
* +-----+-----------------------+
* |stuff|is_not_footwear_related|
* +-----+-----------------------+
* | dog| true|
* |shoes| false|
* |laces| false|
* | null| null|
* +-----+-----------------------+
* }}}
*
* @group expr_ops
*/
def isNotIn(list: Any*): Column = {
not(col.isin(list: _*))
}
def evalString(): String = {
col.expr.eval().toString
}
}
}