Name | Type | Description | Notes |
---|---|---|---|
url | str | URL of the asset | |
score | float | Relative measure that illustrates a degree similarity between the input query and the resulting asset. It is computed as the cosine similarity between the NVCLIP embedding of the input query and the respective NVCLIP embedding of the result | |
embed | str | [optional] | |
root_prims | List[Prim1] | [optional] | |
default_prims | List[Prim1] | [optional] | |
image | str | [optional] | |
predictions | List[Prediction] | [optional] | |
vision_generated_metadata | Dict[str, str] | [optional] | |
metadata | Metadata | [optional] | |
in_scene_instance_prims | List[Prim1] | [optional] |
from usd_search_client.models.search_result import SearchResult
# update the JSON string below
json = "{}"
# create an instance of SearchResult from a JSON string
search_result_instance = SearchResult.from_json(json)
# print the JSON string representation of the object
print(SearchResult.to_json())
# convert the object into a dict
search_result_dict = search_result_instance.to_dict()
# create an instance of SearchResult from a dict
search_result_from_dict = SearchResult.from_dict(search_result_dict)