from google.colab import drive

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", f£
- - -}

!cp /content/drive/MyDrive/FL/FLARE\ sample/tf2 net.py /content

import tf2 net

!pip install nvflare

[

Collecting nvflare
Downloading nvflare-2.0.12-py3-none-any.whl (799 kB)

| N | 799 KB 5.4 MB/S

Collecting cryptography
Downloading cryptography-36.0.1-cp36-abi3-manylinux 2 24 x86 64.whl (3.6 MB)

| N | .G B 34.2 MB/s

Requirement
Requirement
Requirement
Requirement

already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:

Collecting tenseal==0.3.0
Downloading tenseal-0.3.0-cp37-cp37m-manylinux2014 x86 64.whl (4.4 MB)

| I, | 4.4 MB 31.1 MB/s

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

already
already
already
already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

google-api-python-client in /usr/local/lib/python3.7/dist-packages (from nvfla
PyYAML in /usr/local/lib/python3.7/dist-packages (from nvflare) (3.13)

grpcio in /usr/local/lib/python3.7/dist-packages (from nvflare) (1.43.0)
psutil in /usr/local/lib/python3.7/dist-packages (from nvflare) (5.4.8)

numpy in /usr/local/lib/python3.7/dist-packages (from nvflare) (1.19.5)

cffi>=1.12 in /usr/local/lib/python3.7/dist-packages (from cryptography->nvfla
pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.12->cryptogr
uritemplate<4dev,>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from googl
httplib2<ldev,>=0.15.0 in /usr/local/lib/python3.7/dist-packages (from google-
google-auth<3dev,>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from goog
google-api-core<3dev,>=1.21.0 in /usr/local/lib/python3.7/dist-packages (from
six<2dev,>=1.13.0 in /usr/local/lib/python3.7/dist-packages (from google-api-g
google-auth-httplib2>=0.0.3 in /usr/local/lib/python3.7/dist-packages (from gc
googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.7/dist-packa

Fo3 O W OFH W OH K HHHH

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

already
already
already
already
already
already
already
already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

Installing collected packages:

Successfully installed cryptography-36.0.1 nvflare-2.0.12 tenseal-0.3.0
.- - - - -

setuptools>=40.3.0 in /usr/local/lib/python3.7/dist-packages (from google-api-
requests<3.0.0dev,>=2.18.0 in /usr/local/lib/python3.7/dist-packages (from goc
protobuf>=3.12.0 in /usr/local/lib/python3.7/dist-packages (from google-api-cc
packaging>=14.3 in /usr/local/lib/python3.7/dist-packages (from google-api-cor
pytz in /usr/local/lib/python3.7/dist-packages (from google-api-core<3dev,>=1.
pyasnl-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-a
rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3dev
cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-
pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packa
pyasnl<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasnl-mc
certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.
urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packa
chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3.0
idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0dev
tenseal, cryptography, nvflare

Copyright (c) 2021, NVIDIA CORPORATION.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

import tensorflow as tf

import numpy

from
from
from
from
from

nvflare.
nvflare.
nvflare.
nvflare.
nvflare.

as np

Unless required by applicable law or agreed to in writing,
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions
limitations under the License.

apis.dxo import DXO, DataKind,

software

and

from shareable

apis.fl constant import ReturnCode
apis.event type import EventType
apis.executor import Executor
apis.fl context import FLContext

from nvflare.apis.shareable import Shareable, make reply
from nvflare.apis.signal import Signal

from tf2 net import Net

class SimpleTrainer (Executor):
def init (self, epochs per round):
super(). init ()
self.epochs per round = epochs per round
self.train images, self.train labels = None, None
self.test images, self.test labels = None, None
self.model = None

def handle event(self, event type: str, fl ctx: FLContext):
if event type == EventType.START RUN:
self.setup(fl ctx)

def setup(self, fl ctx: FLContext):
(self.train images, self.train labels), (
self.test images,
self.test labels,
) = tf.keras.datasets.mnist.load data()
self.train images, self.test images = (
self.train images / 255.0,
self.test images / 255.0,

simulate separate datasets for each client by dividing MNIST dataset in half
client name = fl ctx.get identity name()
if client name == "site-1":
self.train images = self.train images[: len(self.train images) // 2]
self.train labels = self.train labels[: len(self.train labels) // 2]
self.test images = self.test images[: len(self.test images) // 2]
self.test labels = self.test labels[: len(self.test labels) // 2]
elif client name == "site-2":
self.train images = self.train images[len(self.train images) // 2 :]
self.train labels = self.train labels[len(self.train labels) // 2 :]
self.test images = self.test images[len(self.test images) // 2 :]

self.test labels = self.test labels[len(self.test labels) // 2 :]

model = Net()

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])

= model(tf.keras.Input(shape=(28, 28)))

self.var list = [model.get layer(index=index).name for index in range(len(model.get weights()))]
self.model = model

def execute(
self,
task name: str,
shareable: Shareable,
fl ctx: FLContext,
abort signal: Signal,
) -> Shareable:
This function is an extended function from the super class.
As a supervised learning based trainer, the train function will run
evaluate and train engines based on model weights from ~shareable’.
After finishing training, a new ~Shareable” object will be submitted
to server for aggregation.
Args:
task name: dispatched task
shareable: the “Shareable”™ object acheived from server.
fl ctx: the “FLContext object achieved from server.
abort signal: if triggered, the training will be aborted.
Returns:
a new Shareable™ object to be submitted to server for aggregation.

retrieve model weights download from server's shareable
if abort signal.triggered:
return make reply(ReturnCode.TASK ABORTED)

if task _name != "train":
return make reply(ReturnCode.TASK UNKNOWN)

dxo = from shareable(shareable)
model weights = dxo.data

use previous round's client weights to replace excluded layers from server
prev_weights = {
self.model.get layer(index=key).name: value for key, value in enumerate(self.model.get weights())

ordered model weights = {key: model weights.get(key) for key in prev_weights}
for key in self.var list:
value = ordered model weights.get(key)
if np.all(value == 0):
ordered model weights[key] = prev _weights[key]

update local model weights with received weights
self.model.set weights(list(ordered model weights.values()))

adjust LR or other training time info as needed
such as callback in the fit function
self.model.fit(
self.train images,
self.train_labels,
epochs=self.epochs per round,
validation data=(self.test images, self.test labels),

report updated weights in shareable
weights = {self.model.get layer(index=key).name: value for key, value in enumerate(self.model.get weights(
dxo = DXO(data kind=DataKind.WEIGHTS, data=weights)

self.log info(fl ctx, "Local epochs finished. Returning shareable")
new shareable = dxo.to_shareable()
return new_shareable

Copyright (c) 2021, NVIDIA CORPORATION.

#

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

oW oH W FH W H KW

limitations under the License.

import os
import pickle
import json

import tensorflow as tf

from nvflare.apis.event type import EventType

from nvflare.apis.fl constant import FLContextKey

from nvflare.apis.fl context import FLContext

from nvflare.app common.abstract.model import ModelLearnable

from nvflare.app common.abstract.model persistor import ModelPersistor
from tf2 net import Net

from nvflare.app common.app constant import AppConstants

from nvflare.app common.abstract.model import make model learnable

class TF2ModelPersistor (ModelPersistor):
def init (self, save name="tf2 model.pkl"):
super(). init ()
self.save name = save name

def initialize(self, f1 ctx: FLContext):
get save path from FLContext
app_root = fl ctx.get prop(FLContextKey.APP ROOT)
env = None
run_args = fl ctx.get prop(FLContextKey.ARGS)
if run args:
env_config file name = os.path.join(app root, run_ args.env)
if os.path.exists(env_config file name):
try:

with open(env_config file name) as file:
env = json.load(file)
except:
self.system panic(
reason="error opening env config file {}".format(env_config file name), fl ctx=fl ctx

)

return

if env is not None:
if env.get("APP CKPT DIR", None):
fl ctx.set prop(AppConstants.LOG DIR, env["APP _CKPT DIR"], private=True, sticky=True)
if env.get("APP CKPT") is not None:
fl ctx.set prop(
AppConstants.CKPT_PRELOAD_ PATH,
env["APP_CKPT"],
private=True,
sticky=True,

log dir = fl ctx.get prop(AppConstants.LOG_DIR)
if log dir:

self.log dir
else:

os.path.join(app root, log dir)

self.log dir = app root
self. pkl save path = os.path.join(self.log dir, self.save name)
if not os.path.exists(self.log dir):

os.makedirs(self.log dir)
fl ctx.sync sticky()

def load model(self, fl ctx: FLContext) -> ModelLearnable:
initialize and load the Model.
Args:
fl ctx: FLContext
Returns:
Model object

if os.path.exists(self. pkl save path):

self.logger.info(f"Loading server weights")

with open(self. pkl save path, "rb") as f:

model learnable = pickle.load(f)

else:

self.logger.info(f"Initializing server model")
Net ()
loss_fn tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)
network.compile(optimizer="adam", loss=loss_ fn, metrics=["accuracy"])
_ = network(tf.keras.Input(shape=(28, 28)))
var _dict = {network.get layer(index=key).name: value for key, value in enumerate(network.get weights()
model learnable = make model learnable(var dict, dict())

network

return model learnable

def handle event(self, event: str, fl ctx: FLContext):
if event == EventType.START RUN:
self. initialize(fl ctx)

def save model(self, model learnable: ModelLearnable, fl ctx: FLContext):
persist the Model object
Args:
model: Model object
fl ctx: FLContext
model learnable info = {k: str(type(v)) for k, v in model learnable.items()}
self.logger.info(f"Saving aggregated server weights: \n {model learnable info}")
with open(self. pkl save path, "wb") as f:
pickle.dump(model learnable, £f)

!lpoc -n 2
This will delete poc folder in current directory and create a new one. Is it OK to proceed? (y/N) y

Successfully creating poc folder. Please read poc/Readme.rst for user guide.

!mkdir -p poc/admin/transfer

!cp -rf /content/drive/MyDrive/FL/NVFlare-main/examples/* poc/admin/transfer

!nohup bash ./poc/server/startup/start.sh &

nohup: appending output to 'nohup.out'

!nohup bash ./poc/site-1/startup/start.sh &

nohup: appending output to 'nohup.out'

Inohup bash ./poc/site-2/startup/start.sh &

nohup: appending output to 'nohup.out

!./poc/admin/startup/fl_admin.sh localhost

/content/poc/admin/startup

Admin Server: localhost on port 8003

User Name: admin

Password:

Type ? to list commands; type "? cmdName" to show usage of a command.
> check status server

FL_app name: ?

Engine status: stopped

Run number has not been set.

Registered clients: 2

| site-1 | d2a8e53a-78a9-4e48-b8d1-83dcfc39d8be | Sun Feb 13 18:38:43 2022 |
| site-2 | 9094ec01-1dad-4£fdf-92b4-7£922de61b50 | Sun Feb 13 18:38:46 2022 |
Done [1532 usecs] 2022-02-13 18:39:38.174908

> upload app hello-tf2

Created folder /content/poc/server/startup/../transfer/hello-tf2

> set_run_ number 1
Created a new run folder: run 1

Done [502768 usecs] 2022-02-13 18:43:29.389927
> deploy app hello-tf2 all
deployed app "hello-tf2" to Server

Done [406576 usecs] 2022-02-13 18:43:48.774886
> start app all
Server app is starting....

Done [15383932 usecs] 2022-02-13 18:44:22.332943
> check status server

FL app name: hello-tf2

Engine status: started

Current run number: 1

Registered clients: 2

| site-1 | d2a8e53a-78a9-4e48-b8d1-83dcfc39d8be | Sun Feb 13 18:44:43 2022 |
| site-2 | 9094ec0l-1dad-4£fdf-92b4-7£922de61b50 | Sun Feb 13 18:44:46 2022 |

from google.colab import drive
drive.mount('/content/drive"')

