-
Notifications
You must be signed in to change notification settings - Fork 337
/
test_fused_rope.py
204 lines (182 loc) · 6.51 KB
/
test_fused_rope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.
import math
import pytest
import torch
from typing import Callable, Tuple, Union
from transformer_engine.pytorch.attention import (
RotaryPositionEmbedding,
apply_rotary_pos_emb,
)
def _get_thd_freqs_on_this_cp_rank(
cp_rank: int, cp_size: int, x: torch.Tensor, freqs: torch.Tensor
) -> torch.Tensor:
if cp_size > 1:
cp_seg = x.size(0) // 2
full_seqlen = cp_size * x.size(0)
return torch.cat(
[
freqs[cp_rank * cp_seg : (cp_rank + 1) * cp_seg],
freqs[full_seqlen - (cp_rank + 1) * cp_seg : full_seqlen - cp_rank * cp_seg],
]
)
else:
return freqs[: x.size(0)]
def apply_rotary_pos_emb_thd(
t: torch.Tensor,
cu_seqlens: torch.Tensor,
freqs: torch.Tensor,
cp_size: int = 1,
cp_rank: int = 0,
) -> torch.Tensor:
"""A baseline implementation of applying RoPE for `thd` format.
Args:
t (Tensor): Input tensor T is of shape [t, h, d]
cu_seqlens(Tensor): Cumulative sum of sequence lengths in a batch for `t`,
with shape [b + 1] and dtype torch.int32.
freqs (Tensor): Rotary Positional embedding tensor freq is of shape [max_s, 1, 1, d]
Returns:
Tensor: Shape [t, h, d]. The input tensor after applying RoPE.
"""
cu_seqlens = cu_seqlens // cp_size
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
return torch.cat(
[
apply_rotary_pos_emb(
x.unsqueeze(1), _get_thd_freqs_on_this_cp_rank(cp_rank, cp_size, x, freqs)
)
for x in torch.split(t, seqlens)
]
).squeeze(1)
# Gradient is a broadcasted scalar
def _overlapping_grad(output: torch.Tensor) -> torch.Tensor:
return output.sum() * 2
# Gradient is a full tensor
def _non_overlapping_grad(output: torch.Tensor) -> torch.Tensor:
t = torch.ones_like(output)
return torch.sum(output * t)
@pytest.mark.parametrize("dtype", [torch.float32, torch.bfloat16, torch.float16])
@pytest.mark.parametrize("seq_length", [2048, 4096])
@pytest.mark.parametrize("hidden_size", [128, 256])
@pytest.mark.parametrize("rotary_percent", [0.5, 1.0])
@pytest.mark.parametrize("margin", [0, 10])
@pytest.mark.parametrize("transpose", [None, (0, 1), (2, 3)])
@pytest.mark.parametrize("tensor_format", ["sbhd", "bshd"])
@pytest.mark.parametrize("loss_func", [_overlapping_grad, _non_overlapping_grad])
def test_fused_rope(
dtype: torch.dtype,
seq_length: int,
hidden_size: int,
rotary_percent: float,
margin: int,
transpose: Union[Tuple, None],
tensor_format: str,
loss_func: Callable,
) -> None:
device = torch.device("cuda:0")
batch_size, head_num = 2, 64
t = torch.rand(
(seq_length - margin, batch_size, head_num, hidden_size),
dtype=dtype,
device=device,
)
if tensor_format == "bshd":
t = t.transpose(0, 1).contiguous()
if transpose:
t = t.transpose(*transpose).contiguous().transpose(*transpose)
t.requires_grad = True
rotary_pos_emb = RotaryPositionEmbedding(hidden_size, rotary_percent)
emb = rotary_pos_emb(seq_length)
# unfused
# The fused kernel computes in float32 internally, so we force the unfused func to use float32
# for more accurate comparison
output_unfused = apply_rotary_pos_emb(
t.float(), emb, tensor_format=tensor_format, fused=False
).to(dtype)
loss_unfused = loss_func(output_unfused)
loss_unfused.backward()
grad_unfused = t.grad.detach().clone()
t.grad = None
# fused
output_fused = apply_rotary_pos_emb(
t,
emb,
tensor_format=tensor_format,
fused=True,
)
loss_fused = loss_func(output_fused)
loss_fused.backward()
grad_fused = t.grad.detach().clone()
t.grad = None
torch.testing.assert_close(output_fused, output_unfused)
torch.testing.assert_close(grad_fused, grad_unfused)
assert output_fused.is_contiguous()
@pytest.mark.parametrize("dtype", [torch.float32, torch.bfloat16, torch.float16])
@pytest.mark.parametrize("hidden_size", [128, 256])
@pytest.mark.parametrize("rotary_percent", [0.5, 1.0])
@pytest.mark.parametrize("transpose", [None, (1, 2)])
@pytest.mark.parametrize("loss_func", [_overlapping_grad, _non_overlapping_grad])
@pytest.mark.parametrize("cp_size", [1, 2, 3])
def test_fused_rope_thd(
dtype: torch.dtype,
hidden_size: int,
rotary_percent: float,
transpose: Union[Tuple, None],
loss_func: Callable,
cp_size: int,
) -> None:
device = torch.device("cuda:0")
batch_size, head_num = 2, 64
cu_seqlens = [0, 400, 542, 711, 727, 752, 1270, 1426, 1450, 1954, 2044, 2048]
if cp_size > 1:
cu_seqlens_padded = [0]
for i in range(1, len(cu_seqlens)):
cu_seqlens_padded.append(
cu_seqlens_padded[i - 1]
+ math.ceil((cu_seqlens[i] - cu_seqlens[i - 1]) / (cp_size * 2)) * (cp_size * 2)
)
else:
cu_seqlens_padded = cu_seqlens
cu_seqlens_padded = torch.tensor(
cu_seqlens_padded,
dtype=torch.int32,
device=device,
)
t = torch.rand(
(cu_seqlens_padded[-1] // cp_size, head_num, hidden_size),
dtype=dtype,
device=device,
)
if transpose:
t = t.transpose(*transpose).contiguous().transpose(*transpose)
t.requires_grad = True
rotary_pos_emb = RotaryPositionEmbedding(hidden_size, rotary_percent)
emb = rotary_pos_emb(cu_seqlens_padded[-1])
for cp_rank in range(cp_size):
# unfused
# The fused kernel computes in float32 internally, so we force the unfused func to use float32
# for more accurate comparison
output_unfused = apply_rotary_pos_emb_thd(
t.float(), cu_seqlens_padded, emb, cp_size, cp_rank
).to(dtype)
loss_unfused = loss_func(output_unfused)
loss_unfused.backward()
grad_unfused = t.grad.detach().clone()
t.grad = None
# fused
output_fused = apply_rotary_pos_emb(
t,
emb,
fused=True,
tensor_format="thd",
cu_seqlens=cu_seqlens_padded,
cp_size=cp_size,
cp_rank=cp_rank,
)
loss_fused = loss_func(output_fused)
loss_fused.backward()
grad_fused = t.grad.detach().clone()
t.grad = None
torch.testing.assert_close(output_fused, output_unfused)
torch.testing.assert_close(grad_fused, grad_unfused)