-
Notifications
You must be signed in to change notification settings - Fork 44
/
evaluate_lmms_eval.py
345 lines (302 loc) · 13.3 KB
/
evaluate_lmms_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import yaml
import sys
import copy
import json
import logging
import traceback
import argparse
import torch
import numpy as np
import datetime
import warnings
import traceback
warnings.simplefilter("ignore", category=DeprecationWarning)
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs
from pathlib import Path
from typing import Union
import hashlib
from lmms_eval import evaluator, utils
from lmms_eval.tasks import initialize_tasks, include_path, get_task_dict
from lmms_eval.api.registry import ALL_TASKS
from lmms_eval.logging_utils import WandbLogger
from lmms_eval.utils import PathFormatter
eval_logger = logging.getLogger("lmms-eval")
def _handle_non_serializable(o):
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def parse_eval_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--config", default="", help="Path to a yaml file specifying all eval arguments, will ignore cli arguments if specified")
parser.add_argument("--model", default="hf", help="Name of model e.g. `hf`")
parser.add_argument(
"--tasks",
default=None,
help="To get full list of tasks, use the command lmms-eval --tasks list",
)
parser.add_argument(
"--model_args",
default="",
help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
type=int,
default=None,
help="Number of examples in few-shot context",
)
parser.add_argument("--batch_size", type=str, default=1)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu)",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
metavar="= [dir/file.jsonl] [DIR]",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. " "If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks",
)
parser.add_argument(
"--show_task_to_terminal",
action="store_true",
default=False,
help="Prints the prompt for the first few documents",
)
parser.add_argument(
"--log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
)
parser.add_argument(
"--wandb_log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis to Weights and Biases",
)
parser.add_argument(
"--log_samples_suffix",
type=str,
default="",
help="Specify a suffix for the log_samples file name.",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
default="",
help=("String arguments for model generation on greedy_until tasks," " e.g. `temperature=0,top_k=0,top_p=0`"),
)
parser.add_argument(
"--verbosity",
type=str,
default="INFO",
help="Log error when tasks are not registered.",
)
parser.add_argument(
"--wandb_args",
default="",
help="Comma separated string arguments passed to wandb.init, e.g. `project=lmms-eval,job_type=eval",
)
parser.add_argument(
"--timezone",
default="Asia/Singapore",
help="Timezone for datetime string, e.g. Asia/Singapore, America/New_York, America/Los_Angeles",
)
args = parser.parse_args()
return args
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
args = parse_eval_args()
# Check if no arguments were passed after parsing
if len(sys.argv) == 1:
print("┌───────────────────────────────────────────────────────────────────────────────┐")
print("│ Please provide arguments to evaluate the model. e.g. │")
print("│ `lmms-eval --model llava --model_path liuhaotian/llava-v1.6-7b --tasks okvqa` │")
print("│ Use `lmms-eval --help` for more information. │")
print("└───────────────────────────────────────────────────────────────────────────────┘")
sys.exit(1)
set_loggers(args)
eval_logger = logging.getLogger("lmms-eval")
eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args_list = []
results_list = []
if args.config:
if not os.path.exists(args.config):
raise ValueError(f"Config file does not exist: {args.config}")
with open(args.config, "r") as file:
config_args = yaml.safe_load(file)
config_args = [config_args] if type(config_args) != list else config_args
# multiple configs, create args list first
for config in config_args:
args_copy = argparse.Namespace(**vars(args))
for key, value in config.items():
setattr(args_copy, key, value)
args_list.append(args_copy)
else:
args_list.append(args)
# initialize Accelerator
kwargs_handler = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=60000))
accelerator = Accelerator(kwargs_handlers=[kwargs_handler])
if accelerator.is_main_process:
is_main_process = True
else:
is_main_process = False
for args in args_list:
try:
if is_main_process and args.wandb_args: # thoughtfully we should only init wandb once, instead of multiple ranks to avoid network traffics and unwanted behaviors.
wandb_logger = WandbLogger(args)
# TO REMOVE
print(args)
results, samples = cli_evaluate_single(args)
results_list.append(results)
accelerator.wait_for_everyone()
if is_main_process and args.wandb_args:
wandb_logger.post_init(results)
wandb_logger.log_eval_result()
if args.wandb_log_samples and samples is not None:
wandb_logger.log_eval_samples(samples)
wandb_logger.finish()
except Exception as e:
traceback.print_exc()
eval_logger.error(f"Error during evaluation: {e}")
traceback.print_exc()
results_list.append(None)
for args, results in zip(args_list, results_list):
# cli_evaluate will return none if the process is not the main process (rank 0)
if results is not None:
print_results(args, results)
def cli_evaluate_single(args: Union[argparse.Namespace, None] = None) -> None:
eval_logger = logging.getLogger("lmms-eval")
eval_logger.setLevel(getattr(logging, f"{args.verbosity}"))
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
initialize_tasks(args.verbosity)
if args.limit:
eval_logger.warning(" --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
include_path(args.include_path)
if args.tasks is None:
task_names = ALL_TASKS
elif args.tasks == "list":
eval_logger.info("Available Tasks:\n - {}".format(f"\n - ".join(sorted(ALL_TASKS))))
sys.exit()
elif args.tasks == "list_with_num":
log_message = (
"\n" + "=" * 70 + "\n" + "\n\tYou are trying to check all the numbers in each task." + "\n\tThis action will download the complete dataset." + "\n\tIf the results are not clear initially, call this again." + "\n\n" + "=" * 70
)
eval_logger.info(log_message)
task_dict = get_task_dict([task for task in sorted(ALL_TASKS)], model_name="llava")
for task_name in task_dict.keys():
task_obj = task_dict[task_name]
if type(task_obj) == tuple:
group, task_obj = task_obj
if task_obj is None:
continue
eval_logger.info(f"\nTask : {task_obj.config.task}\n - #num : {len(task_obj.test_docs()) if task_obj.has_test_docs() else len(task_obj.validation_docs())}")
sys.exit()
else:
tasks_list = args.tasks.split(",")
eval_logger.info(f"Evaluating on {len(tasks_list)} tasks.")
task_names = utils.pattern_match(tasks_list, ALL_TASKS)
task_missing = [task for task in tasks_list if task not in task_names and "*" not in task] # we don't want errors if a wildcard ("*") task name was used
if task_missing:
missing = ", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}. Try `lmms-eval --tasks list` for list of available tasks",
)
# eval_logger.warn(f"Tasks {missing} were not found. Try `lmms-eval --tasks list` for list of available tasks.")
eval_logger.info(f"Selected Tasks: {task_names}")
# set datetime before evaluation
datetime_str = utils.get_datetime_str(timezone=args.timezone)
if args.output_path:
hash_input = f"{args.model_args}".encode("utf-8")
hash_output = hashlib.sha256(hash_input).hexdigest()[:6]
path = Path(args.output_path)
path = path.expanduser().resolve().joinpath(f"{datetime_str}_{args.log_samples_suffix}_{args.model}_model_args_{hash_output}")
args.output_path = path
elif args.log_samples and not args.output_path:
assert args.output_path, "Specify --output_path"
results = evaluator.simple_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
device=args.device,
limit=args.limit,
check_integrity=args.check_integrity,
show_task_to_terminal=args.show_task_to_terminal,
log_samples=args.log_samples,
gen_kwargs=args.gen_kwargs,
cli_args=args,
)
if results is not None:
if args.log_samples:
samples = results.pop("samples")
else:
samples = None
dumped = json.dumps(results, indent=4, default=_handle_non_serializable)
if args.show_config:
print(dumped)
if args.output_path:
args.output_path.mkdir(parents=True, exist_ok=True)
result_file_path = path.joinpath("results.json")
if result_file_path.exists():
eval_logger.warning(f"Output file {result_file_path} already exists and will be overwritten.")
result_file_path.open("w").write(dumped)
if args.log_samples:
for task_name, config in results["configs"].items():
filename = args.output_path.joinpath(f"{task_name}.json")
# Structure the data with 'args' and 'logs' keys
data_to_dump = {"args": vars(args), "model_configs": config, "logs": sorted(samples[task_name], key=lambda x: x["doc_id"])} # Convert Namespace to dict
samples_dumped = json.dumps(data_to_dump, indent=4, default=_handle_non_serializable)
filename.open("w").write(samples_dumped)
eval_logger.info(f"Saved samples to {filename}")
return results, samples
return None, None
def print_results(args, results):
print(f"{args.model} ({args.model_args}),\ngen_kwargs: ({args.gen_kwargs}),\nlimit: {args.limit},\nnum_fewshot: {args.num_fewshot},\nbatch_size: {args.batch_size}")
print(evaluator.make_table(results))
if "groups" in results:
print(evaluator.make_table(results, "groups"))
def set_loggers(args):
eval_logger = logging.getLogger("lmms-eval")
ch = logging.StreamHandler()
formatter = PathFormatter("%(asctime)s [%(pathname)s:%(lineno)d] %(levelname)s %(message)s", "%m-%d %H:%M:%S", timezone=args.timezone)
ch.setFormatter(formatter)
eval_logger.addHandler(ch)
if __name__ == "__main__":
cli_evaluate()