-
Notifications
You must be signed in to change notification settings - Fork 238
/
funit_model.py
127 lines (116 loc) · 5.34 KB
/
funit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license
(https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import copy
import torch
import torch.nn as nn
from networks import FewShotGen, GPPatchMcResDis
def recon_criterion(predict, target):
return torch.mean(torch.abs(predict - target))
class FUNITModel(nn.Module):
def __init__(self, hp):
super(FUNITModel, self).__init__()
self.gen = FewShotGen(hp['gen'])
self.dis = GPPatchMcResDis(hp['dis'])
self.gen_test = copy.deepcopy(self.gen)
def forward(self, co_data, cl_data, hp, mode):
xa = co_data[0].cuda()
la = co_data[1].cuda()
xb = cl_data[0].cuda()
lb = cl_data[1].cuda()
if mode == 'gen_update':
c_xa = self.gen.enc_content(xa)
s_xa = self.gen.enc_class_model(xa)
s_xb = self.gen.enc_class_model(xb)
xt = self.gen.decode(c_xa, s_xb) # translation
xr = self.gen.decode(c_xa, s_xa) # reconstruction
l_adv_t, gacc_t, xt_gan_feat = self.dis.calc_gen_loss(xt, lb)
l_adv_r, gacc_r, xr_gan_feat = self.dis.calc_gen_loss(xr, la)
_, xb_gan_feat = self.dis(xb, lb)
_, xa_gan_feat = self.dis(xa, la)
l_c_rec = recon_criterion(xr_gan_feat.mean(3).mean(2),
xa_gan_feat.mean(3).mean(2))
l_m_rec = recon_criterion(xt_gan_feat.mean(3).mean(2),
xb_gan_feat.mean(3).mean(2))
l_x_rec = recon_criterion(xr, xa)
l_adv = 0.5 * (l_adv_t + l_adv_r)
acc = 0.5 * (gacc_t + gacc_r)
l_total = (hp['gan_w'] * l_adv + hp['r_w'] * l_x_rec + hp[
'fm_w'] * (l_c_rec + l_m_rec))
l_total.backward()
return l_total, l_adv, l_x_rec, l_c_rec, l_m_rec, acc
elif mode == 'dis_update':
xb.requires_grad_()
l_real_pre, acc_r, resp_r = self.dis.calc_dis_real_loss(xb, lb)
l_real = hp['gan_w'] * l_real_pre
l_real.backward(retain_graph=True)
l_reg_pre = self.dis.calc_grad2(resp_r, xb)
l_reg = 10 * l_reg_pre
l_reg.backward()
with torch.no_grad():
c_xa = self.gen.enc_content(xa)
s_xb = self.gen.enc_class_model(xb)
xt = self.gen.decode(c_xa, s_xb)
l_fake_p, acc_f, resp_f = self.dis.calc_dis_fake_loss(xt.detach(),
lb)
l_fake = hp['gan_w'] * l_fake_p
l_fake.backward()
l_total = l_fake + l_real + l_reg
acc = 0.5 * (acc_f + acc_r)
return l_total, l_fake_p, l_real_pre, l_reg_pre, acc
else:
assert 0, 'Not support operation'
def test(self, co_data, cl_data):
self.eval()
self.gen.eval()
self.gen_test.eval()
xa = co_data[0].cuda()
xb = cl_data[0].cuda()
c_xa_current = self.gen.enc_content(xa)
s_xa_current = self.gen.enc_class_model(xa)
s_xb_current = self.gen.enc_class_model(xb)
xt_current = self.gen.decode(c_xa_current, s_xb_current)
xr_current = self.gen.decode(c_xa_current, s_xa_current)
c_xa = self.gen_test.enc_content(xa)
s_xa = self.gen_test.enc_class_model(xa)
s_xb = self.gen_test.enc_class_model(xb)
xt = self.gen_test.decode(c_xa, s_xb)
xr = self.gen_test.decode(c_xa, s_xa)
self.train()
return xa, xr_current, xt_current, xb, xr, xt
def translate_k_shot(self, co_data, cl_data, k):
self.eval()
xa = co_data[0].cuda()
xb = cl_data[0].cuda()
c_xa_current = self.gen_test.enc_content(xa)
if k == 1:
c_xa_current = self.gen_test.enc_content(xa)
s_xb_current = self.gen_test.enc_class_model(xb)
xt_current = self.gen_test.decode(c_xa_current, s_xb_current)
else:
s_xb_current_before = self.gen_test.enc_class_model(xb)
s_xb_current_after = s_xb_current_before.squeeze(-1).permute(1,
2,
0)
s_xb_current_pool = torch.nn.functional.avg_pool1d(
s_xb_current_after, k)
s_xb_current = s_xb_current_pool.permute(2, 0, 1).unsqueeze(-1)
xt_current = self.gen_test.decode(c_xa_current, s_xb_current)
return xt_current
def compute_k_style(self, style_batch, k):
self.eval()
style_batch = style_batch.cuda()
s_xb_before = self.gen_test.enc_class_model(style_batch)
s_xb_after = s_xb_before.squeeze(-1).permute(1, 2, 0)
s_xb_pool = torch.nn.functional.avg_pool1d(s_xb_after, k)
s_xb = s_xb_pool.permute(2, 0, 1).unsqueeze(-1)
return s_xb
def translate_simple(self, content_image, class_code):
self.eval()
xa = content_image.cuda()
s_xb_current = class_code.cuda()
c_xa_current = self.gen_test.enc_content(xa)
xt_current = self.gen_test.decode(c_xa_current, s_xb_current)
return xt_current