-
Notifications
You must be signed in to change notification settings - Fork 0
/
pkm_clf.py
69 lines (54 loc) · 2.24 KB
/
pkm_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# importing libraries
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
img_width, img_height = 224, 224
train_data_dir = 'C:\\Users\\admin\\Desktop\\Python\\pokedex'
validation_data_dir = 'C:\\Users\\admin\\Desktop\\Python\\JokerCord-master\\Assets'
nb_train_samples = 400
nb_validation_samples = 100
epochs = 10
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (2, 2), input_shape = input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size =(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size =(2, 2)))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size =(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss ='binary_crossentropy',
optimizer ='rmsprop',
metrics =['accuracy'])
train_datagen = ImageDataGenerator(
rescale = 1. / 255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1. / 255)
train_generator = train_datagen.flow_from_directory(train_data_dir,
target_size =(img_width, img_height),
batch_size = batch_size, class_mode ='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size =(img_width, img_height),
batch_size = batch_size, class_mode ='binary')
model.fit_generator(train_generator,
steps_per_epoch = nb_train_samples // batch_size,
epochs = epochs, validation_data = validation_generator,
validation_steps = nb_validation_samples // batch_size)
model.save_weights('model_saved.h5')