pfPySpectra offers the Python interface to the C++ Spectra library by pybind11, faster than sicpy in some ways.
pfPySpecta offers two general interfaces to Spectra: eigensolver and eigensolverh. For general(dense&sparse) and symmetric(dense&sparse) matrices respectively.These two functions would invoke the most suitable method based on the information provided by the user
import numpy as np
import scipy.sparse as s
from pfpyspectra import eigensolver, eigensolverh
# matrix size
size = 100
# number of eigenpairs to compute
nvalues = 2
# Create random matrix
xs = np.random.normal(size=size ** 2).reshape(size, size)
new_xs=sp.rand(size, size, density=0.1, format='csc')
# Create symmetric matrix
mat = xs + xs.T
new_mat = new_xs + new_xs.T
# Compute two eigenpairs selecting the eigenvalues with
# largest magnitude (default).
eigenvalues, eigenvectors = eigensolver(xs, nvalues)
sprse_eigenvalues, sprse_eigenvectors = eigensolver(new_xs, nvalues)
# Compute two eigenpairs selecting the eigenvalues with
# largest algebraic value
selection_rule = "LargestAlge"
symm_eigenvalues, symm_eigenvectors = eigensolverh(
mat, nvalues, selection_rule)
sprse_symm_eigenvalues, sprse_symm_eigenvectors = eigensolverh(
mat, nvalues, selection_rule)
Note: The available selection_rules to compute a portion of the spectrum are:
- LargestMagn
- LargestReal
- LargestImag
- LargestAlge
- SmallestMagn
- SmallestReal
- SmallestImag
- SmallestAlge
- BothEnds
You can also call directly the dense interface. You would need to import the following module:
import numpy as np
from pfpyspectra import spectra_dense_interface
The following functions are available in the spectra_dense_interface:
-
general_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
general_real_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
general_complex_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift_real: float, shift_imag: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_shift_eigensolver( mat: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
symmetric_generalized_shift_eigensolver( mat_A: np.ndarray, mat_B: np.ndarray, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
You can also call directly the sparse interface. You would need to import the following module:
import scipy as sp
from pfpyspectra import spectra_sparse_interface
The following functions are available in the spectra_sparse_interface:
-
sparse_general_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_general_real_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_general_complex_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift_real: float, shift_imag: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_shift_eigensolver( mat: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
-
sparse_symmetric_generalized_shift_eigensolver( mat_A: sp.spmatrix, mat_B: sp.spmatrix, eigenpairs: int, basis_size: int, shift: float, selection_rule: str) -> (np.ndarray, np.ndarray)
import numpy as np
from pfpyspectra import spectra_dense_interface
size = 100
nvalues = 2 # eigenpairs to compute
search_space = nvalues * 2 # size of the search space
shift = 1.0
# Create random matrix
xs = np.random.normal(size=size ** 2).reshape(size, size)
# Create symmetric matrix
mat = xs + xs.T
# Compute two eigenpairs selecting the eigenvalues with
# largest algebraic value
selection_rule = "LargestAlge"
symm_eigenvalues, symm_eigenvectors = \
spectra_dense_interface.symmetric_eigensolver(
mat, nvalues, search_space, selection_rule)
Note: All functions return a tuple whith the resulting eigenvalues and eigenvectors. For more examples, please see the directory:
pfpyspectra/tests/
To install pyspectra, do:
git clone git@gitee.com:PerfXLab/spectra4py.git
cd pyspectra
bash ./install.sh
Run tests (including coverage) with:
pytest tests/test_dense_pyspectra.py
pytest tests/test_sparse_pyspectra.py
pytest tests/test_pyspectra.py
# also you can just `pytest tests`
Help: If you don't pass them all, don't worry, try a few more times.
I think that's because of the random parameter problem, It will not affect the use, can you help me?
No. Just for fun!
Thanks :
pyspectra,
C++ Spectra library