-
Notifications
You must be signed in to change notification settings - Fork 21
/
video_processing_midas.py
124 lines (97 loc) · 3.18 KB
/
video_processing_midas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import traceback
import cv2
import numpy as np
import sys
import argparse
from datetime import datetime
import os
# Mono depth using MiDaS project - old model
# https://github.com/intel-isl/MiDaS
# Install steps:
# pip install pytorch torchvision
# cd ..
# git clone https://github.com/intel-isl/MiDaS
# wget https://github.com/intel-isl/MiDaS/releases/download/v2/model-f46da743.pt MiDaS/model-f46da743.pt
# Status: working
sys.path.insert(0, '../MiDaS/')
import torch
from torchvision.transforms import Compose
from midas.midas_net import MidasNet
from midas.transforms import Resize, NormalizeImage, PrepareForNet
def init_model(transform):
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
model_path = "../MiDaS/model-f46da743.pt"
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# load network
model = MidasNet(model_path, non_negative=True)
transform = Compose(
[
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
model.to(device)
model.eval()
return (model, transform, device), None
def process_image(transform,processing_model,img):
global previous_grey, hsv, skip_frames,hsv_roi,roi_hist, term_criteria,x, y, w, h
tracks = []
try:
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
img1 = get_depth(img1,processing_model[0],processing_model[1], processing_model[2])
img1 = (img1/256).astype(np.uint8)
img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
img1 = cv2.applyColorMap(img1, cv2.COLORMAP_JET)
img = img1
except Exception as e:
track = traceback.format_exc()
print(track)
print("MiDaS Exception",e)
pass
return tracks,img
def depth_to_image(depth, bits=1):
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = 0
if bits == 1:
img = out.astype("uint8")
elif bits == 2:
img = out.astype("uint16")
return img
def get_depth(img, model,transform,device):
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
img = depth_to_image(prediction, bits=2)
return img