-
Notifications
You must be signed in to change notification settings - Fork 2
/
ptcolor.py
389 lines (279 loc) · 11.3 KB
/
ptcolor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""Pytorch routines for color conversions and management.
All color arguments are given as 4-dimensional tensors representing
batch of images (Bx3xHxW). RGB values are supposed to be in the
range 0-1 (but values outside the range are tolerated).
Some examples:
>>> rgb = torch.tensor([0.8, 0.4, 0.2]).view(1, 3, 1, 1)
>>> lab = rgb2lab(rgb)
>>> print(lab.view(-1))
tensor([54.6400, 36.9148, 46.1227])
>>> rgb2 = lab2rgb(lab)
>>> print(rgb2.view(-1))
tensor([0.8000, 0.4000, 0.2000])
>>> rgb3 = torch.tensor([0.1333,0.0549,0.0392]).view(1, 3, 1, 1)
>>> lab3 = rgb2lab(rgb3)
>>> print(lab3.view(-1))
tensor([6.1062, 9.3593, 5.2129])
"""
import torch
def _t(data):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return torch.tensor(data, requires_grad=False, dtype=torch.float32, device=device)
def _mul(coeffs, image):
coeffs = coeffs.to(image.device).view(3, 3, 1, 1)
return torch.nn.functional.conv2d(image, coeffs)
_RGB_TO_XYZ = {
"srgb": _t([[0.4124564, 0.3575761, 0.1804375],
[0.2126729, 0.7151522, 0.0721750],
[0.0193339, 0.1191920, 0.9503041]]),
"prophoto": _t([[0.7976749, 0.1351917, 0.0313534],
[0.2880402, 0.7118741, 0.0000857],
[0.0000000, 0.0000000, 0.8252100]])
}
_XYZ_TO_RGB = {
"srgb": _t([[3.2404542, -1.5371385, -0.4985314],
[-0.9692660, 1.8760108, 0.0415560],
[0.0556434, -0.2040259, 1.0572252]]),
"prophoto": _t([[1.3459433, -0.2556075, -0.0511118],
[-0.5445989, 1.5081673, 0.0205351],
[0.0000000, 0.0000000, 1.2118128]])
}
WHITE_POINTS = {item[0]: _t(item[1:]).view(1, 3, 1, 1) for item in [
("a", 1.0985, 1.0000, 0.3558),
("b", 0.9807, 1.0000, 1.1822),
("e", 1.0000, 1.0000, 1.0000),
("d50", 0.9642, 1.0000, 0.8251),
("d55", 0.9568, 1.0000, 0.9214),
("d65", 0.9504, 1.0000, 1.0888),
("icc", 0.9642, 1.0000, 0.8249)
]}
_EPSILON = 0.008856
_KAPPA = 903.3
_XYZ_TO_LAB = _t([[0.0, 116.0, 0.], [500.0, -500.0, 0.], [0.0, 200.0, -200.0]])
_LAB_TO_XYZ = _t([[1.0 / 116.0, 1.0 / 500.0, 0], [1.0 / 116.0, 0, 0], [1.0 / 116.0, 0, -1.0 / 200.0]])
_LAB_OFF = _t([16.0, 0.0, 0.0]).view(1, 3, 1, 1)
def apply_gamma(rgb, gamma="srgb"):
"""Linear to gamma rgb.
Assume that rgb values are in the [0, 1] range (but values outside are tolerated).
gamma can be "srgb", a real-valued exponent, or None.
>>> apply_gamma(torch.tensor([0.5, 0.4, 0.1]).view([1, 3, 1, 1]), 0.5).view(-1)
tensor([0.2500, 0.1600, 0.0100])
"""
if gamma == "srgb":
T = 0.0031308
rgb1 = torch.max(rgb, rgb.new_tensor(T))
return torch.where(rgb < T, 12.92 * rgb, (1.055 * torch.pow(torch.abs(rgb1), 1 / 2.4) - 0.055))
elif gamma is None:
return rgb
else:
return torch.pow(torch.max(rgb, rgb.new_tensor(0.0)), 1.0 / gamma)
def remove_gamma(rgb, gamma="srgb"):
"""Gamma to linear rgb.
Assume that rgb values are in the [0, 1] range (but values outside are tolerated).
gamma can be "srgb", a real-valued exponent, or None.
>>> remove_gamma(apply_gamma(torch.tensor([0.001, 0.3, 0.4])))
tensor([0.0010, 0.3000, 0.4000])
>>> remove_gamma(torch.tensor([0.5, 0.4, 0.1]).view([1, 3, 1, 1]), 2.0).view(-1)
tensor([0.2500, 0.1600, 0.0100])
"""
if gamma == "srgb":
T = 0.04045
rgb1 = torch.max(rgb, rgb.new_tensor(T))
return torch.where(rgb < T, rgb / 12.92, torch.pow(torch.abs(rgb1 + 0.055) / 1.055, 2.4))
elif gamma is None:
return rgb
else:
res = torch.pow(torch.max(rgb, rgb.new_tensor(0.0)), gamma) + \
torch.min(rgb, rgb.new_tensor(0.0))
return res
def rgb2xyz(rgb, gamma_correction="srgb", clip_rgb=False, space="srgb"):
"""sRGB to XYZ conversion.
rgb: Bx3xHxW
return: Bx3xHxW
>>> rgb2xyz(torch.tensor([0., 0., 0.]).view(1, 3, 1, 1)).view(-1)
tensor([0., 0., 0.])
>>> rgb2xyz(torch.tensor([0., 0.75, 0.]).view(1, 3, 1, 1)).view(-1)
tensor([0.1868, 0.3737, 0.0623])
>>> rgb2xyz(torch.tensor([0.4, 0.8, 0.2]).view(1, 3, 1, 1), gamma_correction=None).view(-1)
tensor([0.4871, 0.6716, 0.2931])
>>> rgb2xyz(torch.ones(2, 3, 4, 5)).size()
torch.Size([2, 3, 4, 5])
>>> xyz2rgb(torch.tensor([-1, 2., 0.]).view(1, 3, 1, 1), clip_rgb=True).view(-1)
tensor([0.0000, 1.0000, 0.0000])
>>> rgb2xyz(torch.tensor([0.4, 0.8, 0.2]).view(1, 3, 1, 1), gamma_correction=None, space='prophoto').view(-1)
tensor([0.4335, 0.6847, 0.1650])
"""
if clip_rgb:
rgb = torch.clamp(rgb, 0, 1)
rgb = remove_gamma(rgb, gamma_correction)
return _mul(_RGB_TO_XYZ[space], rgb)
def xyz2rgb(xyz, gamma_correction="srgb", clip_rgb=False, space="srgb"):
"""XYZ to sRGB conversion.
rgb: Bx3xHxW
return: Bx3xHxW
>>> xyz2rgb(torch.tensor([0., 0., 0.]).view(1, 3, 1, 1)).view(-1)
tensor([0., 0., 0.])
>>> xyz2rgb(torch.tensor([0.04, 0.02, 0.05]).view(1, 3, 1, 1)).view(-1)
tensor([0.3014, 0.0107, 0.2503])
>>> xyz2rgb(torch.ones(2, 3, 4, 5)).size()
torch.Size([2, 3, 4, 5])
>>> xyz2rgb(torch.tensor([-1, 2., 0.]).view(1, 3, 1, 1), clip_rgb=True).view(-1)
tensor([0.0000, 1.0000, 0.0000])
"""
rgb = _mul(_XYZ_TO_RGB[space], xyz)
if clip_rgb:
rgb = torch.clamp(rgb, 0, 1)
rgb = apply_gamma(rgb, gamma_correction)
return rgb
def _lab_f(x):
x1 = torch.max(x, x.new_tensor(_EPSILON))
return torch.where(x > _EPSILON, torch.pow(x1, 1.0 / 3), (_KAPPA * x + 16.0) / 116.0)
def xyz2lab(xyz, white_point="d65"):
"""XYZ to Lab conversion.
xyz: Bx3xHxW
return: Bx3xHxW
>>> xyz2lab(torch.tensor([0., 0., 0.]).view(1, 3, 1, 1)).view(-1)
tensor([0., 0., 0.])
>>> xyz2lab(torch.tensor([0.4, 0.2, 0.1]).view(1, 3, 1, 1)).view(-1)
tensor([51.8372, 82.3018, 26.7245])
>>> xyz2lab(torch.tensor([1., 1., 1.]).view(1, 3, 1, 1), white_point="e").view(-1)
tensor([100., 0., 0.])
"""
xyz = xyz / WHITE_POINTS[white_point].to(xyz.device)
f_xyz = _lab_f(xyz)
return _mul(_XYZ_TO_LAB, f_xyz) - _LAB_OFF.to(xyz.device)
def _inv_lab_f(x):
x3 = torch.max(x, x.new_tensor(_EPSILON)) ** 3
return torch.where(x3 > _EPSILON, x3, (116.0 * x - 16.0) / _KAPPA)
def lab2xyz(lab, white_point="d65"):
"""lab to XYZ conversion.
lab: Bx3xHxW
return: Bx3xHxW
>>> lab2xyz(torch.tensor([0., 0., 0.]).view(1, 3, 1, 1)).view(-1)
tensor([0., 0., 0.])
>>> lab2xyz(torch.tensor([100., 0., 0.]).view(1, 3, 1, 1), white_point="e").view(-1)
tensor([1., 1., 1.])
>>> lab2xyz(torch.tensor([50., 25., -30.]).view(1, 3, 1, 1)).view(-1)
tensor([0.2254, 0.1842, 0.4046])
"""
f_xyz = _mul(_LAB_TO_XYZ, lab + _LAB_OFF.to(lab.device))
xyz = _inv_lab_f(f_xyz)
return xyz * WHITE_POINTS[white_point].to(lab.device)
def rgb2lab(rgb, white_point="d65", gamma_correction="srgb", clip_rgb=False, space="srgb"):
"""sRGB to Lab conversion."""
lab = xyz2lab(rgb2xyz(rgb, gamma_correction, clip_rgb, space), white_point)
return lab
def lab2rgb(rgb, white_point="d65", gamma_correction="srgb", clip_rgb=False, space="srgb"):
"""Lab to sRGB conversion."""
return xyz2rgb(lab2xyz(rgb, white_point), gamma_correction, clip_rgb, space)
def lab2lch(lab):
"""Lab to LCH conversion."""
l = lab[:, 0, :, :]
c = torch.norm(lab[:, 1:, :, :], 2, 1)
h = torch.atan2(lab[:, 2, :, :], lab[:, 1, :, :])
h = h * (180 / 3.141592653589793)
h = torch.where(h >= 0, h, 360 + h)
return torch.stack([l, c, h], 1)
def rgb2lch(rgb, white_point="d65", gamma_correction="srgb", clip_rgb=False, space="srgb"):
"""sRGB to LCH conversion."""
lab = rgb2lab(rgb, white_point, gamma_correction, clip_rgb, space)
return lab2lch(lab)
def squared_deltaE(lab1, lab2):
"""Squared Delta E (CIE 1976).
lab1: Bx3xHxW
lab2: Bx3xHxW
return: Bx1xHxW
"""
return torch.sum((lab1 - lab2) ** 2, 1, keepdim=True)
def deltaE(lab1, lab2):
"""Delta E (CIE 1976).
lab1: Bx3xHxW
lab2: Bx3xHxW
return: Bx1xHxW
>>> lab1 = torch.tensor([100., 75., 50.]).view(1, 3, 1, 1)
>>> lab2 = torch.tensor([50., 50., 100.]).view(1, 3, 1, 1)
>>> deltaE(lab1, lab2).item()
75.0
"""
return torch.norm(lab1 - lab2, 2, 1, keepdim=True)
def squared_deltaE94(lab1, lab2):
"""Squared Delta E (CIE 1994).
Default parameters for the 'Graphic Art' version.
lab1: Bx3xHxW (reference color)
lab2: Bx3xHxW (other color)
return: Bx1xHxW
"""
diff_2 = (lab1 - lab2) ** 2
dl_2 = diff_2[:, 0:1, :, :]
c1 = torch.norm(lab1[:, 1:3, :, :], 2, 1, keepdim=True)
c2 = torch.norm(lab2[:, 1:3, :, :], 2, 1, keepdim=True)
dc_2 = (c1 - c2) ** 2
dab_2 = torch.sum(diff_2[:, 1:3, :, :], 1, keepdim=True)
dh_2 = torch.abs(dab_2 - dc_2)
de_2 = (dl_2 +
dc_2 / ((1 + 0.045 * c1) ** 2) +
dh_2 / ((1 + 0.015 * c1) ** 2))
return de_2
def deltaE94(lab1, lab2):
"""Delta E (CIE 1994).
Default parameters for the 'Graphic Art' version.
lab1: Bx3xHxW (reference color)
lab2: Bx3xHxW (other color)
return: Bx1xHxW
>>> lab1 = torch.tensor([100., 0., 0.]).view(1, 3, 1, 1)
>>> lab2 = torch.tensor([80., 0., 0.]).view(1, 3, 1, 1)
>>> deltaE94(lab1, lab2).item()
20.0
>>> lab1 = torch.tensor([100., 0., 0.]).view(1, 3, 1, 1)
>>> lab2 = torch.tensor([100., 20., 0.]).view(1, 3, 1, 1)
>>> deltaE94(lab1, lab2).item()
20.0
>>> lab1 = torch.tensor([100., 0., 10.]).view(1, 3, 1, 1)
>>> lab2 = torch.tensor([100., 0., 0.]).view(1, 3, 1, 1)
>>> round(deltaE94(lab1, lab2).item(), 4)
6.8966
>>> lab1 = torch.tensor([100., 75., 50.]).view(1, 3, 1, 1)
>>> lab2 = torch.tensor([50., 50., 100.]).view(1, 3, 1, 1)
>>> round(deltaE94(lab1, lab2).item(), 4)
54.7575
"""
sq = torch.nn.functional.relu(squared_deltaE94(lab1, lab2))
return torch.sqrt(sq)
def _check_conversion(**opts):
"""Verify the conversions on the RGB cube.
>>> _check_conversion(white_point='d65', gamma_correction='srgb', clip_rgb=False, space='srgb')
True
>>> _check_conversion(white_point='d50', gamma_correction=1.8, clip_rgb=False, space='prophoto')
True
"""
for r in range(0, 256, 15):
for g in range(0, 256, 15):
for b in range(0, 256, 15):
rgb = torch.tensor([r / 255.0, g / 255.0, b / 255.0]).view(1, 3, 1, 1)
lab = rgb2lab(rgb, **opts)
rgb2 = lab2rgb(lab, **opts)
de = deltaE(rgb, rgb2).item()
if de > 2e-4:
print("Conversion failed for RGB:", r, g, b, " deltaE", de)
return False
return True
def _check_gradients():
"""Verify some borderline gradient computation
>>> a = torch.zeros(1, 3, 1, 1, requires_grad=True)
>>> b = torch.zeros(1, 3, 1, 1, requires_grad=True)
>>> deltaE(a, b).backward()
>>> torch.any(torch.isnan(a.grad)).item()
0
>>> torch.any(torch.isnan(b.grad)).item()
0
>>> deltaE94(a, b).backward()
>>> torch.any(torch.isnan(a.grad)).item()
0
>>> torch.any(torch.isnan(b.grad)).item()
0
"""
return True
if __name__ == '__main__':
import doctest
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
print("Test completed")