-
Notifications
You must be signed in to change notification settings - Fork 18
/
lib.rs
355 lines (311 loc) · 13.6 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
use convert_case::{Case, Casing};
use proc_macro::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Ident, ItemEnum};
/// Automatically implements `From` for each type in an aggregate type enum.
///
/// The supplied enum should have a single unnamed type parameter for each variant.
/// And the type for each variant should be unique in the enum.
///
/// The macro generates all the `From` implementations automatically.
#[proc_macro_attribute]
pub fn aggregate(_: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let variants2 = variants.clone();
let inner_types = variant_type_pairs.map(|(_v, t)| t);
let inner_types2 = inner_types.clone();
let output = quote! {
// First keep the original code in tact
#original_code
// Now write all the wrapping From impls
#(
impl From<#inner_types> for #outer_type {
fn from(b: #inner_types) -> Self {
Self::#variants(b)
}
}
)*
// Finally write all the un-wrapping From impls
#(
impl From<#outer_type> for #inner_types2 {
fn from(a: #outer_type) -> Self {
if let #outer_type::#variants2(b) = a {
b
} else {
panic!("wrong type or something...")
}
}
}
)*
};
output.into()
}
/// This macro treats the supplied enum as an aggregate verifier. As such, it implements the `From`
/// trait for eah of the inner types. Then it implements the `Verifier` trait for this type for this
/// enum by delegating to an inner type.
#[proc_macro_attribute]
pub fn tuxedo_verifier(_: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let vis = ast.vis;
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let inner_types = variant_type_pairs.map(|(_v, t)| t);
// Set up the name of the new associated type.
let mut redeemer_type_name = outer_type.to_string();
redeemer_type_name.push_str("Redeemer");
let redeemer_type = Ident::new(&redeemer_type_name, outer_type.span());
let type_for_new_unspendable = inner_types
.clone()
.next()
.expect("At least one verifier variant expected.");
// TODO there must be a better way to do this, right?
let inner_types2 = inner_types.clone();
let variants2 = variants.clone();
let variants3 = variants.clone();
let variant_for_new_unspendable = variants
.clone()
.next()
.expect("At least one verifier variant expected.");
let as_variants = variants.clone().map(|v| {
let s = format!("as_{}", v);
let s = s.to_case(Case::Snake);
Ident::new(&s, v.span())
});
let as_variants2 = as_variants.clone();
let output = quote! {
// Preserve the original enum, and write the From impls
#[tuxedo_core::aggregate]
#original_code
/// This type is generated by the `#[tuxedo_verifier]` macro.
/// It is a combined redeemer type for the redeemers of each individual verifier.
///
/// This type is accessible downstream as `<OuterVerifier as Verifier>::Redeemer`
#[derive(Debug, Encode, Decode)]
#vis enum #redeemer_type {
#(
#variants(<#inner_types as tuxedo_core::Verifier>::Redeemer),
)*
}
// Put a bunch of methods like `.as_variant1()` on the aggregate redeemer type
// These are necessary when unwrapping the onion.
// Might be that we should have a helper macro for this as well
impl #redeemer_type {
#(
pub fn #as_variants(&self) -> Option<&<#inner_types2 as tuxedo_core::Verifier>::Redeemer> {
match self {
Self::#variants2(inner) => Some(inner),
_ => None,
}
}
)*
}
impl tuxedo_core::Verifier for #outer_type {
type Redeemer = #redeemer_type;
fn verify(&self, simplified_tx: &[u8], block_number: u32, redeemer: &Self::Redeemer) -> bool {
match self {
#(
Self::#variants3(inner) => inner.verify(
simplified_tx,
block_number,
redeemer.#as_variants2().expect("redeemer variant exists because the macro constructed that type.")
),
)*
}
}
// The aggregation macro assumes that the first variant is able to produce a new unspendable instance.
// In the future this could be made nicer (but maybe not worth the complexity) by allowing an additional
// annotation to the one that can be used as unspendable eg `#[unspendable]`
// If this ever becomes a challenge just add an explicit `Unspendable` variant first.
fn new_unspendable() -> Option<Self> {
#type_for_new_unspendable::new_unspendable().map(|inner| Self::#variant_for_new_unspendable(inner))
}
}
};
output.into()
}
/// This macro treats the supplied enum as an aggregate constraint checker. As such, it implements the `From`
/// trait for eah of the inner types. Then it implements the `ConstraintChecker` trait for this type for this
/// enum by delegating to an inner type.
///
/// It also declares an associated error type. The error type has a variant for each inner constraint checker,
/// just like this original enum. however, the contained values in the error enum are of the corresponding types
/// for the inner constraint checker.
#[proc_macro_attribute]
pub fn tuxedo_constraint_checker(_attrs: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let inner_types = variant_type_pairs.map(|(_v, t)| t);
// Set up the names of the new associated types.
let mut error_type_name = outer_type.to_string();
error_type_name.push_str("Error");
let error_type = Ident::new(&error_type_name, outer_type.span());
let vis = ast.vis;
// TODO there must be a better way to do this, right?
let inner_types2 = inner_types.clone();
let inner_types3 = inner_types.clone();
let inner_types4 = inner_types.clone();
let variants2 = variants.clone();
let variants3 = variants.clone();
let variants4 = variants.clone();
let variants5 = variants.clone();
let output = quote! {
// Preserve the original enum, and write the From impls
#[tuxedo_core::aggregate]
#original_code
/// This type is generated by the `#[tuxedo_constraint_checker]` macro.
/// It is a combined error type for the errors of each individual checker.
///
/// This type is accessible downstream as `<OuterConstraintChecker as ConstraintChecker>::Error`
#[derive(Debug)]
#vis enum #error_type {
#(
#variants(<#inner_types as tuxedo_core::ConstraintChecker>::Error),
)*
}
impl tuxedo_core::ConstraintChecker for #outer_type {
type Error = #error_type;
fn check (
&self,
inputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
evicted_inputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
peeks: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
outputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
) -> Result<TransactionPriority, Self::Error> {
match self {
#(
Self::#variants5(inner) => inner.check(inputs, evicted_inputs, peeks, outputs).map_err(|e| Self::Error::#variants5(e)),
)*
}
}
fn is_inherent(&self) -> bool {
match self {
#(
Self::#variants2(inner) => inner.is_inherent(),
)*
}
}
fn create_inherents<V: tuxedo_core::Verifier>(
authoring_inherent_data: &InherentData,
previous_inherents: Vec<(tuxedo_core::types::Transaction<V, #outer_type>, sp_core::H256)>,
) -> Vec<tuxedo_core::types::Transaction<V, #outer_type>> {
let mut all_inherents = Vec::new();
#(
{
// Filter the previous inherents down to just the ones that came from this piece
let previous_inherents = previous_inherents
.iter()
.filter_map(|(tx, hash)| {
match tx.checker {
#outer_type::#variants3(ref inner_checker) => Some((tx.transform::<#inner_types3>(), *hash )),
_ => None,
}
})
.collect();
let inherents = <#inner_types3 as tuxedo_core::ConstraintChecker>::create_inherents(authoring_inherent_data, previous_inherents)
.iter()
.map(|tx| tx.transform::<#outer_type>())
.collect::<Vec<_>>();
all_inherents.extend(inherents);
}
)*
// Return the aggregate of all inherent extrinsics from all constituent constraint checkers.
all_inherents
}
fn check_inherents<V: tuxedo_core::Verifier>(
importing_inherent_data: &sp_inherents::InherentData,
inherents: Vec<tuxedo_core::types::Transaction<V, #outer_type>>,
result: &mut sp_inherents::CheckInherentsResult,
) {
#(
let relevant_inherents: Vec<tuxedo_core::types::Transaction<V, #inner_types4>> = inherents
.iter()
.filter_map(|tx| {
match tx.checker {
#outer_type::#variants4(ref inner_checker) => Some(tx.transform::<#inner_types4>()),
_ => None,
}
})
.collect();
<#inner_types4 as tuxedo_core::ConstraintChecker>::check_inherents(importing_inherent_data, relevant_inherents, result);
// According to https://paritytech.github.io/polkadot-sdk/master/sp_inherents/struct.CheckInherentsResult.html
// "When a fatal error occurs, all other errors are removed and the implementation needs to abort checking inherents."
if result.fatal_error() {
return;
}
)*
}
fn genesis_transactions<V: tuxedo_core::Verifier>() -> Vec<tuxedo_core::types::Transaction<V, #outer_type>> {
let mut all_transactions: Vec<tuxedo_core::types::Transaction<V, #outer_type>> = Vec::new();
#(
let transactions =
<#inner_types2 as tuxedo_core::ConstraintChecker>::genesis_transactions();
all_transactions.extend(
transactions
.into_iter()
.map(|tx| tx.transform::<#outer_type>())
.collect::<Vec<_>>()
);
)*
all_transactions
}
}
};
output.into()
}