-
Notifications
You must be signed in to change notification settings - Fork 93
/
fit.py
289 lines (253 loc) · 9.42 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# borrow from optimization https://github.com/wangsen1312/joints2smpl
from __future__ import division, print_function
import argparse
import os
import random
import shutil
import sys
from os import listdir, walk
from os.path import isfile, join
from pathlib import Path
import h5py
import joblib
import natsort
import numpy as np
import smplx
import torch
import trimesh
from mGPT.data.transforms.joints2rots import config
from mGPT.data.transforms.joints2rots.smplify import SMPLify3D
from mGPT.utils.joints import mmm_to_smplh_scaling_factor
from mGPT.utils.temos_utils import subsample
from scripts.plys2npy import plys2npy
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))
# parsing argmument
parser = argparse.ArgumentParser()
parser.add_argument("--batchSize",
type=int,
default=1,
help="input batch size")
parser.add_argument(
"--num_smplify_iters",
type=int,
default=100,
help="num of smplify iters" # 100
)
parser.add_argument("--cuda", type=bool, default=True, help="enables cuda")
parser.add_argument("--gpu_ids", type=int, default=0, help="choose gpu ids")
parser.add_argument("--num_joints", type=int, default=22, help="joint number")
parser.add_argument("--joint_category",
type=str,
default="AMASS",
help="use correspondence")
parser.add_argument("--fix_foot",
type=str,
default="False",
help="fix foot or not")
parser.add_argument(
"--data_folder",
type=str,
default="", # ./demo/demo_data/
help="data in the folder",
)
parser.add_argument(
"--save_folder",
type=str,
default=None,
# default="./../TMOSTData/demo/",
help="results save folder",
)
parser.add_argument("--dir", type=str, default=None, help="folder use")
parser.add_argument("--files",
type=str,
default="test_motion.npy",
help="files use")
opt = parser.parse_args()
print(opt)
# ---load predefined something
device = torch.device("cuda:" + str(opt.gpu_ids) if opt.cuda else "cpu")
print(config.SMPL_MODEL_DIR)
# smplmodel = smplx.create(config.SMPL_MODEL_DIR,
# model_type="smplh", gender="neutral", ext="npz",
# batch_size=opt.batchSize).to(device)
smplmodel = smplx.create(
config.SMPL_MODEL_DIR,
model_type="smpl",
gender="neutral",
ext="pkl",
batch_size=opt.batchSize,
).to(device)
# ## --- load the mean pose as original ----
smpl_mean_file = config.SMPL_MEAN_FILE
file = h5py.File(smpl_mean_file, "r")
init_mean_pose = (torch.from_numpy(
file["pose"][:]).unsqueeze(0).float().repeat(opt.batchSize, 1).to(device))
init_mean_shape = (torch.from_numpy(
file["shape"][:]).unsqueeze(0).float().repeat(opt.batchSize, 1).to(device))
cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(device)
#
pred_pose = torch.zeros(opt.batchSize, 72).to(device)
pred_betas = torch.zeros(opt.batchSize, 10).to(device)
pred_cam_t = torch.zeros(opt.batchSize, 3).to(device)
keypoints_3d = torch.zeros(opt.batchSize, opt.num_joints, 3).to(device)
# # #-------------initialize SMPLify
smplify = SMPLify3D(
smplxmodel=smplmodel,
batch_size=opt.batchSize,
joints_category=opt.joint_category,
num_iters=opt.num_smplify_iters,
device=device,
)
print("initialize SMPLify3D done!")
paths = []
if opt.dir:
output_dir = Path(opt.dir)
# file_list = os.listdir(cfg.RENDER.DIR)
# random begin for parallel
file_list = natsort.natsorted(os.listdir(opt.dir))
begin_id = random.randrange(0, len(file_list))
file_list = file_list[begin_id:] + file_list[:begin_id]
for item in file_list:
if item.endswith(".npy"):
paths.append(os.path.join(opt.dir, item))
elif opt.files:
paths.append(opt.files)
print(f"begin to render {len(paths)} npy files!")
# if opt.save_folder is None:
# save_folder = os.path.pardir(opt.dir) + "results_smplfitting"
# if not os.path.isdir(save_folder):
# os.makedirs(save_folder, exist_ok=True)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder, exist_ok=True)
for path in paths:
dir_save = os.path.join(opt.save_folder, "results_smplfitting",
"SMPLFit_" + os.path.basename(path)[:-4])
if os.path.exists(path[:-4] + "_mesh.npy"):
print(f"npy is fitted {path[:-4]}_mesh.npy")
# check_file = ""
# try:
# data = np.load(path)
# except:
continue
# if os.path.exists(dir_save):
# print(f"npy is fitted or under fitting {dir_save}")
# continue
data = np.load(path)
if len(data.shape) > 3:
data = data[0]
# check input joint or meshes
if data.shape[1] > 1000:
print("npy is a mesh now {dir_save}")
continue
print(f"begin rendering {dir_save}")
if not os.path.isdir(dir_save):
os.makedirs(dir_save, exist_ok=True)
if opt.num_joints == 22:
# humanml3d amass
frames = subsample(len(data), last_framerate=12.5, new_framerate=12.5)
data = data[frames, ...]
elif opt.num_joints == 21:
# kit
# purename = os.path.splitext(opt.files)[0]
# data = np.load(opt.data_folder + "/" + purename + ".npy")
# downsampling to
frames = subsample(len(data), last_framerate=100, new_framerate=12.5)
data = data[frames, ...]
# Convert mmm joints for visualization
# into smpl-h "scale" and axis
# data = data.copy()[..., [2, 0, 1]] * mmm_to_smplh_scaling_factor
data = data.copy() * mmm_to_smplh_scaling_factor
# run the whole seqs
num_seqs = data.shape[0]
pred_pose_prev = torch.zeros(opt.batchSize, 72).to(device)
pred_betas_prev = torch.zeros(opt.batchSize, 10).to(device)
pred_cam_t_prev = torch.zeros(opt.batchSize, 3).to(device)
keypoints_3d_prev = torch.zeros(opt.batchSize, opt.num_joints,
3).to(device)
for idx in range(num_seqs):
print(f"computing frame {idx}")
ply_path = dir_save + "/" + "motion_%04d" % idx + ".ply"
if os.path.exists(ply_path[:-4] + ".pkl"):
print(f"this frame is fitted {ply_path}")
continue
joints3d = data[idx] # *1.2 #scale problem [check first]
keypoints_3d[0, :, :] = torch.Tensor(joints3d).to(device).float()
if idx == 0:
pred_betas[0, :] = init_mean_shape
pred_pose[0, :] = init_mean_pose
pred_cam_t[0, :] = cam_trans_zero
else:
# ToDo-use previous results rather than loading
data_param = joblib.load(dir_save + "/" + "motion_%04d" %
(idx - 1) + ".pkl")
pred_betas[0, :] = torch.from_numpy(
data_param["beta"]).unsqueeze(0).float()
pred_pose[0, :] = torch.from_numpy(
data_param["pose"]).unsqueeze(0).float()
pred_cam_t[0, :] = torch.from_numpy(
data_param["cam"]).unsqueeze(0).float()
if opt.joint_category == "AMASS":
confidence_input = torch.ones(opt.num_joints)
# make sure the foot and ankle
if opt.fix_foot == True:
confidence_input[7] = 1.5
confidence_input[8] = 1.5
confidence_input[10] = 1.5
confidence_input[11] = 1.5
elif opt.joint_category == "MMM":
confidence_input = torch.ones(opt.num_joints)
else:
print("Such category not settle down!")
# ----- from initial to fitting -------
(
new_opt_vertices,
new_opt_joints,
new_opt_pose,
new_opt_betas,
new_opt_cam_t,
new_opt_joint_loss,
) = smplify(
pred_pose.detach(),
pred_betas.detach(),
pred_cam_t.detach(),
keypoints_3d,
conf_3d=confidence_input.to(device),
# seq_ind=idx,
)
# # -- save the results to ply---
outputp = smplmodel(
betas=new_opt_betas,
global_orient=new_opt_pose[:, :3],
body_pose=new_opt_pose[:, 3:],
transl=new_opt_cam_t,
return_verts=True,
)
# gt debuggin
if False:
mesh_p = trimesh.Trimesh(
vertices=keypoints_3d.detach().cpu().numpy().squeeze(),
process=False)
mesh_p.export(dir_save + "/" + "%04d" % idx + "_gt.ply")
mesh_p = trimesh.Trimesh(
vertices=outputp.vertices.detach().cpu().numpy().squeeze(),
faces=smplmodel.faces,
process=False,
)
mesh_p.export(ply_path)
print("Output: " + ply_path)
# save the pkl
param = {}
param["beta"] = new_opt_betas.detach().cpu().numpy()
param["pose"] = new_opt_pose.detach().cpu().numpy()
param["cam"] = new_opt_cam_t.detach().cpu().numpy()
joblib.dump(param,
dir_save + "/" + "motion_%04d" % idx + ".pkl",
compress=3)
print("Output: " + dir_save + "/" + "motion_%04d" % idx + ".pkl")
print("merge ply to npy for mesh rendering")
plys2npy(dir_save, os.path.dirname(path))
# # rendering
# if True:
# from tmost.utils.demo_utils import render_batch
# # render_batch(opt.dir, mode="sequence") # sequence
# render_batch(opt.dir, mode="video")