-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
operator.cc
643 lines (569 loc) · 20.4 KB
/
operator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <algorithm>
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(benchmark);
namespace paddle {
namespace framework {
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
if (var->IsType<framework::LoDTensor>()) {
return framework::ToDataType(var->Get<framework::LoDTensor>().type());
} else if (var->IsType<framework::SelectedRows>()) {
return framework::ToDataType(
var->Get<framework::SelectedRows>().value().type());
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
}
}
static DDim GetDims(const Scope& scope, const std::string& name,
bool get_actual_dim = false) {
Variable* var = scope.FindVar(name);
if (var == nullptr) {
return DDim({-1});
}
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims();
} else if (var->IsType<SelectedRows>()) {
if (get_actual_dim) {
return var->Get<SelectedRows>().value().dims();
} else {
return var->Get<SelectedRows>().GetCompleteDims();
}
} else {
return DDim({-1});
}
}
static LoD GetLoD(const Scope& scope, const std::string& name) {
Variable* var = scope.FindVar(name);
auto default_lod = LoD({{}});
if (var == nullptr) {
return default_lod;
}
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().lod();
} else {
return default_lod;
}
}
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("Cannot run operator on place %s", place);
#else
auto dev_id = boost::get<platform::CUDAPlace>(place).device;
platform::SetDeviceId(dev_id);
#endif
}
RunImpl(scope, place);
}
bool OperatorBase::HasInputs(const std::string& name) const {
if (inputs_.find(name) != inputs_.end()) {
return true;
} else {
return false;
}
}
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
"Operator %s's input %s should contain only one variable.",
type_, name);
return ins.empty() ? kEmptyVarName : ins[0];
}
const std::vector<std::string>& OperatorBase::Inputs(
const std::string& name) const {
auto it = inputs_.find(name);
PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
type_, name);
return it->second;
}
bool OperatorBase::HasOutputs(const std::string& name) const {
if (outputs_.find(name) != outputs_.end()) {
return true;
} else {
return false;
}
}
std::string OperatorBase::Output(const std::string& name) const {
auto& outs = Outputs(name);
PADDLE_ENFORCE_LE(outs.size(), 1UL,
"Operator %s's output %s should contain only one variable.",
type_, name);
return outs.empty() ? kEmptyVarName : outs[0];
}
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(),
"Operator %s does not have an output called %s.", type_, name);
return it->second;
}
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
std::stringstream ss;
ss << "Op(" << type_ << "), inputs:{";
for (auto it = inputs_.begin(); it != inputs_.end();) {
auto& input = *it;
ss << input.first << "[";
for (size_t i = 0; i < input.second.size(); ++i) {
ss << input.second[i];
if (scope) {
ss << "[" << GetDims(*scope, input.second[i], true) << "]";
ss << "(" << GetLoD(*scope, input.second[i]) << ")";
}
if (i != input.second.size() - 1) {
ss << ", ";
}
}
ss << "]";
++it;
if (it != inputs_.end()) {
ss << ", ";
}
}
ss << "}, outputs:{";
for (auto it = outputs_.begin(); it != outputs_.end();) {
auto& output = *it;
ss << output.first << "[";
for (size_t i = 0; i < output.second.size(); ++i) {
ss << output.second[i];
if (scope) {
ss << "[" << GetDims(*scope, output.second[i], true) << "]";
ss << "(" << GetLoD(*scope, output.second[i]) << ")";
}
if (i != output.second.size() - 1) {
ss << ", ";
}
}
ss << "]";
++it;
if (it != outputs_.end()) {
ss << ", ";
}
}
ss << "}.";
return ss.str();
}
OperatorBase::OperatorBase(const std::string& type,
const VariableNameMap& inputs,
const VariableNameMap& outputs,
const AttributeMap& attrs)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
GenerateTemporaryNames();
CheckAllInputOutputSet();
}
std::vector<std::string> OperatorBase::InputVars() const {
std::vector<std::string> ret_val;
for (auto& o : inputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
return ret_val;
}
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
std::vector<std::string> ret_val;
if (has_intermediate) {
// push all outputs into ret_val
for (auto& o : outputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
return ret_val;
}
auto& info = OpInfoMap::Instance().Get(Type());
// get all OpProto::Var for outputs
for (auto& o : info.Proto().outputs()) {
// ignore all intermediate output
if (o.intermediate()) continue;
auto out = outputs_.find(o.name());
if (out != outputs_.end()) {
ret_val.reserve(ret_val.size() + out->second.size());
ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
}
}
return ret_val;
}
void OperatorBase::CheckAllInputOutputSet() const {
auto& info_map = OpInfoMap::Instance();
auto* op_info = info_map.GetNullable(Type());
if (op_info == nullptr || op_info->proto_ == nullptr) return;
for (auto& in : op_info->Proto().inputs()) {
if (!in.dispensable()) {
PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
"Operator %s's input, %s, is not set", Type(), in.name());
}
}
for (auto& out : op_info->Proto().outputs()) {
if (!out.dispensable()) {
PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
"Operator %s's output, %s, is not set", Type(),
out.name());
}
}
}
void OperatorBase::GenerateTemporaryNames() {
static std::atomic<size_t> gUniqId(0UL);
for (auto& output : outputs_) {
for (auto& output_name : output.second) {
if (output_name == kTempVarName) {
output_name += type_;
output_name += "@";
output_name += std::to_string(gUniqId.fetch_add(1));
}
}
}
}
static bool VarIsTensor(const Variable* var) {
return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}
static const Tensor* GetTensorFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
return var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
var->Type().name());
}
}
static Tensor* GetMutableTensorFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
return var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
var->Type().name());
}
}
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
return var == nullptr ? nullptr
: GetTensorFromVar(const_cast<Variable*>(var));
}
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const {
auto names = op().Inputs(name);
std::vector<const Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : GetTensorFromVar(var);
});
return res;
}
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
}
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const {
auto names = op().Outputs(name);
std::vector<Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr
: GetMutableTensorFromVar(var);
});
return res;
}
bool OpSupportGPU(const std::string& op_type) {
auto& all_kernels = OperatorWithKernel::AllOpKernels();
auto it = all_kernels.find(op_type);
if (it == all_kernels.end()) {
// All control operator must support GPU
return true;
}
for (auto& kern_pair : it->second) {
if (platform::is_gpu_place(kern_pair.first.place_)) {
return true;
}
}
return false;
}
class RuntimeInferShapeContext : public InferShapeContext {
public:
RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {}
bool HasInput(const std::string& name) const override {
if (!op_.HasInputs(name)) {
return false;
}
auto& ins = Inputs(name);
size_t length = ins.size();
if (length == 0) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL,
"Input %s should not have more than one inputs", name);
auto ipt = ins[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
bool HasOutput(const std::string& name) const override {
if (!op_.HasOutputs(name)) {
return false;
}
auto& outs = Outputs(name);
size_t length = outs.size();
if (length == 0) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL,
"Output %s should not have more than one inputs", name);
auto ipt = outs[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
bool HasInputs(const std::string& name) const override {
if (!op_.HasInputs(name)) {
return false;
}
auto inputs = op_.Inputs(name);
if (inputs.empty()) {
return false;
}
for (auto& input : inputs) {
if (scope_.FindVar(input) == nullptr) {
return false;
}
}
return true;
}
bool HasOutputs(const std::string& name) const override {
if (!op_.HasOutputs(name)) {
return false;
}
auto outputs = op_.Outputs(name);
if (outputs.empty()) {
return false;
}
for (auto& output : outputs) {
if (scope_.FindVar(output) == nullptr) {
return false;
}
}
return true;
}
AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }
const std::vector<std::string>& Inputs(
const std::string& name) const override {
return op_.Inputs(name);
}
const std::vector<std::string>& Outputs(
const std::string& name) const override {
return op_.Outputs(name);
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const override {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
PADDLE_ENFORCE_LT(j, Outputs(out).size());
Variable* in_var = scope_.FindVar(Inputs(in)[i]);
Variable* out_var = scope_.FindVar(Outputs(out)[j]);
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_lod(in_tensor.lod());
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
out_tensor->set_layout(in_tensor.layout());
}
void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
PADDLE_ENFORCE_LT(j, Outputs(out).size());
Variable* in_var = scope_.FindVar(Inputs(in)[i]);
Variable* out_var = scope_.FindVar(Outputs(out)[j]);
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_layout(in_tensor.layout());
}
bool IsRuntime() const override { return true; }
protected:
DDim GetDim(const std::string& name) const override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims();
} else if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().GetCompleteDims();
} else {
PADDLE_THROW(
"Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
"type_id is %s.",
name, var->Type().name());
}
}
std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
PADDLE_THROW("Only compile time support this method");
}
void SetDim(const std::string& name, const DDim& dim) override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
var->GetMutable<LoDTensor>()->Resize(dim);
} else if (var->IsType<SelectedRows>()) {
var->GetMutable<SelectedRows>()->set_height(dim[0]);
} else {
PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
name, var->Type().name());
}
}
void SetRepeatedDims(const std::string& name,
const std::vector<DDim>& dims) override {
PADDLE_THROW("Only compile time support this method");
}
proto::VarType::Type GetVarType(const std::string& name) const override {
auto* var = scope_.FindVar(name);
return ToVarType(var->Type());
}
InferShapeVarPtr GetVarPtr(const std::string& name) override {
return scope_.FindVar(name);
}
private:
const OperatorBase& op_;
const Scope& scope_;
};
void OperatorWithKernel::RunImpl(const Scope& scope,
const platform::Place& place) const {
RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
// For profiling, don't move out of this function because that will result
// in the failure of multi-GPU profiling.
platform::RecordEvent record_event(Type(), dev_ctx);
// check if op[type] has kernel registered.
auto& all_op_kernels = AllOpKernels();
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.", type_);
}
ExecutionContext ctx(*this, scope, *dev_ctx);
OpKernelMap& kernels = kernels_iter->second;
// TODO(dzhwinter) : kernel fallback mechanism will be added when all the
// transform functions are ready.
// for (auto& candidate : kKernelPriority) {
// Do selection
// }
auto expected_kernel_key = this->GetExpectedKernelType(ctx);
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
auto kernel_iter = kernels.find(expected_kernel_key);
if (kernel_iter == kernels.end()) {
PADDLE_THROW("op %s does not have kernel for %s", type_,
KernelTypeToString(expected_kernel_key));
}
// do data transform
Scope& new_scope = scope.NewScope();
std::vector<std::string> inplace_vars;
for (auto& var_name_item : this->Inputs()) {
for (auto& var_name : var_name_item.second) {
auto* var = scope.FindVar(var_name);
if (var && VarIsTensor(var)) {
auto* tensor_in = GetTensorFromVar(var);
if (tensor_in->IsInitialized()) {
auto kernel_type_for_var = this->GetKernelTypeForVar(
var_name_item.first, *tensor_in, expected_kernel_key);
if (TransFromNeeded(kernel_type_for_var, expected_kernel_key)) {
auto out_var_names = OutputVars(true);
if (std::find(out_var_names.begin(), out_var_names.end(),
var_name) != out_var_names.end()) {
inplace_vars.push_back(var_name);
}
VLOG(3) << "Transform Variable " << var_name << " from "
<< kernel_type_for_var << " to " << expected_kernel_key;
auto* trans_var = new_scope.Var(var_name);
std::shared_ptr<Tensor> out(new Tensor);
DataTransform(expected_kernel_key, kernel_type_for_var, *tensor_in,
out.get());
CopyVariableWithTensor(*var, *(out.get()), trans_var);
}
}
}
}
}
auto* new_dev_ctx = pool.Get(expected_kernel_key.place_);
kernel_iter->second->Compute(
ExecutionContext(*this, new_scope, *new_dev_ctx));
for (auto& var_name : inplace_vars) {
VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
auto* transformed_tensor = GetTensorFromVar(new_scope.FindVar(var_name));
original_tensor->ShareDataWith(*transformed_tensor);
}
/*For profiling/benchmark only*/
if (FLAGS_benchmark) {
new_dev_ctx->Wait();
}
}
proto::VarType::Type OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const {
auto& scope = ctx.scope();
int data_type = -1;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
if (var != nullptr) {
const Tensor* t = nullptr;
if (var->IsType<Tensor>()) {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same.", Type());
data_type = tmp;
}
}
}
}
PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
return static_cast<proto::VarType::Type>(data_type);
}
OpKernelType OperatorWithKernel::GetExpectedKernelType(
const ExecutionContext& ctx) const {
return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}
OpKernelType OperatorWithKernel::GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const OpKernelType& expected_kernel_type) const {
return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}
} // namespace framework
} // namespace paddle