-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
search.py
executable file
·1299 lines (1099 loc) · 47.9 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define searching & indexing functions of a tensor
import numpy as np
import paddle
from paddle import _C_ops
from paddle.common_ops_import import VarDesc, Variable
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
from ..base.data_feeder import check_dtype, check_variable_and_dtype
from ..framework import (
LayerHelper,
convert_np_dtype_to_dtype_,
core,
in_dynamic_mode,
in_dynamic_or_pir_mode,
)
# from ..base.layers import has_inf #DEFINE_ALIAS
# from ..base.layers import has_nan #DEFINE_ALIAS
__all__ = []
def argsort(x, axis=-1, descending=False, name=None):
"""
Sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
Args:
x (Tensor): An input N-D Tensor with type bfloat16, float16, float32, float64, int16,
int32, int64, uint8.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is Rank(x). when axis<0, it works the same way
as axis+R. Default is -1.
descending (bool, optional) : Descending is a flag, if set to true,
algorithm will sort by descending order, else sort by
ascending order. Default is false.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor: sorted indices(with the same shape as ``x``
and with data type int64).
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[[5,8,9,5],
... [0,0,1,7],
... [6,9,2,4]],
... [[5,2,4,2],
... [4,7,7,9],
... [1,7,0,6]]],
... dtype='float32')
>>> out1 = paddle.argsort(x, axis=-1)
>>> out2 = paddle.argsort(x, axis=0)
>>> out3 = paddle.argsort(x, axis=1)
>>> print(out1)
Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[0, 3, 1, 2],
[0, 1, 2, 3],
[2, 3, 0, 1]],
[[1, 3, 2, 0],
[0, 1, 2, 3],
[2, 0, 3, 1]]])
>>> print(out2)
Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[0, 1, 1, 1],
[0, 0, 0, 0],
[1, 1, 1, 0]],
[[1, 0, 0, 0],
[1, 1, 1, 1],
[0, 0, 0, 1]]])
>>> print(out3)
Tensor(shape=[2, 3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[1, 1, 1, 2],
[0, 0, 2, 0],
[2, 2, 0, 1]],
[[2, 0, 2, 0],
[1, 1, 0, 2],
[0, 2, 1, 1]]])
"""
if in_dynamic_or_pir_mode():
_, ids = _C_ops.argsort(x, axis, descending)
return ids
else:
check_variable_and_dtype(
x,
'x',
[
'float16',
'float32',
'float64',
'int16',
'int32',
'int64',
'uint8',
],
'argsort',
)
helper = LayerHelper("argsort", **locals())
out = helper.create_variable_for_type_inference(
dtype=x.dtype, stop_gradient=True
)
ids = helper.create_variable_for_type_inference(
VarDesc.VarType.INT64, stop_gradient=True
)
helper.append_op(
type='argsort',
inputs={'X': x},
outputs={'Out': out, 'Indices': ids},
attrs={'axis': axis, 'descending': descending},
)
return ids
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
"""
Computes the indices of the max elements of the input tensor's
element along the provided axis.
Args:
x (Tensor): An input N-D Tensor with type float16, float32, float64, int16,
int32, int64, uint8.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
dtype (str|np.dtype, optional): Data type of the output tensor which can
be int32, int64. The default value is ``int64`` , and it will
return the int64 indices.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor, return the tensor of int32 if set :attr:`dtype` is int32, otherwise return the tensor of int64.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[5,8,9,5],
... [0,0,1,7],
... [6,9,2,4]])
>>> out1 = paddle.argmax(x)
>>> print(out1.numpy())
2
>>> out2 = paddle.argmax(x, axis=0)
>>> print(out2.numpy())
[2 2 0 1]
>>> out3 = paddle.argmax(x, axis=-1)
>>> print(out3.numpy())
[2 3 1]
>>> out4 = paddle.argmax(x, axis=0, keepdim=True)
>>> print(out4.numpy())
[[2 2 0 1]]
"""
if axis is not None and not isinstance(
axis, (int, Variable, paddle.pir.Value)
):
raise TypeError(
"The type of 'axis' must be int or Tensor or None in argmax, but received %s."
% (type(axis))
)
if dtype is None:
raise ValueError(
"the value of 'dtype' in argmax could not be None, but received None"
)
var_dtype = convert_np_dtype_to_dtype_(dtype)
flatten = False
if axis is None:
flatten = True
axis = 0
if in_dynamic_or_pir_mode():
return _C_ops.argmax(x, axis, keepdim, flatten, var_dtype)
else:
helper = LayerHelper("argmax", **locals())
check_variable_and_dtype(
x,
'x',
[
'uint16',
'float16',
'float32',
'float64',
'int16',
'int32',
'int64',
'uint8',
],
'paddle.argmax',
)
check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
attrs = {}
out = helper.create_variable_for_type_inference(var_dtype)
attrs['keepdims'] = keepdim
attrs['axis'] = axis
attrs['flatten'] = flatten
attrs['dtype'] = var_dtype
helper.append_op(
type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs
)
out.stop_gradient = True
return out
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
"""
Computes the indices of the min elements of the input tensor's
element along the provided axis.
Args:
x (Tensor): An input N-D Tensor with type float16, float32, float64, int16,
int32, int64, uint8.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
dtype (str, optional): Data type of the output tensor which can
be int32, int64. The default value is 'int64', and it will
return the int64 indices.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[5,8,9,5],
... [0,0,1,7],
... [6,9,2,4]])
>>> out1 = paddle.argmin(x)
>>> print(out1.numpy())
4
>>> out2 = paddle.argmin(x, axis=0)
>>> print(out2.numpy())
[1 1 1 2]
>>> out3 = paddle.argmin(x, axis=-1)
>>> print(out3.numpy())
[0 0 2]
>>> out4 = paddle.argmin(x, axis=0, keepdim=True)
>>> print(out4.numpy())
[[1 1 1 2]]
"""
if axis is not None and not isinstance(
axis, (int, Variable, paddle.pir.Value)
):
raise TypeError(
"The type of 'axis' must be int or Tensor or None in argmin, but received %s."
% (type(axis))
)
if dtype is None:
raise ValueError(
"the value of 'dtype' in argmin could not be None, but received None"
)
var_dtype = convert_np_dtype_to_dtype_(dtype)
flatten = False
if axis is None:
flatten = True
axis = 0
if in_dynamic_or_pir_mode():
return _C_ops.argmin(x, axis, keepdim, flatten, var_dtype)
else:
helper = LayerHelper("argmin", **locals())
check_variable_and_dtype(
x,
'x',
[
'uint16',
'float16',
'float32',
'float64',
'int16',
'int32',
'int64',
'uint8',
],
'paddle.argmin',
)
check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
out = helper.create_variable_for_type_inference(var_dtype)
attrs = {}
attrs['keepdims'] = keepdim
attrs['axis'] = axis
attrs['flatten'] = flatten
attrs['dtype'] = var_dtype
helper.append_op(
type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs
)
out.stop_gradient = True
return out
def index_select(x, index, axis=0, name=None):
"""
Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using
the entries in ``index`` which is a Tensor. The returned tensor has the same number
of dimensions as the original ``x`` tensor. The dim-th dimension has the same
size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor.
Args:
x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float16, float32, float64, int32, int64, complex64 and complex128.
index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor: A Tensor with same data type as ``x``.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
... [5.0, 6.0, 7.0, 8.0],
... [9.0, 10.0, 11.0, 12.0]])
>>> index = paddle.to_tensor([0, 1, 1], dtype='int32')
>>> out_z1 = paddle.index_select(x=x, index=index)
>>> print(out_z1.numpy())
[[1. 2. 3. 4.]
[5. 6. 7. 8.]
[5. 6. 7. 8.]]
>>> out_z2 = paddle.index_select(x=x, index=index, axis=1)
>>> print(out_z2.numpy())
[[ 1. 2. 2.]
[ 5. 6. 6.]
[ 9. 10. 10.]]
"""
if in_dynamic_or_pir_mode():
return _C_ops.index_select(x, index, axis)
else:
helper = LayerHelper("index_select", **locals())
check_variable_and_dtype(
x,
'x',
[
'uint16',
'float16',
'float32',
'float64',
'int32',
'int64',
'complex64',
'complex128',
],
'paddle.tensor.search.index_select',
)
check_variable_and_dtype(
index,
'index',
['int32', 'int64'],
'paddle.tensor.search.index_select',
)
out = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='index_select',
inputs={'X': x, 'Index': index},
outputs={'Out': out},
attrs={'dim': axis},
)
return out
def nonzero(x, as_tuple=False):
"""
Return a tensor containing the indices of all non-zero elements of the `input`
tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension
in `input`, each containing the indices (in that dimension) of all non-zero elements
of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If
as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the
number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get
a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
Args:
x (Tensor): The input tensor variable.
as_tuple (bool, optional): Return type, Tensor or tuple of Tensor.
Returns:
Tensor. The data type is int64.
Examples:
.. code-block:: python
>>> import paddle
>>> x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
... [0.0, 2.0, 0.0],
... [0.0, 0.0, 3.0]])
>>> x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
>>> out_z1 = paddle.nonzero(x1)
>>> print(out_z1)
Tensor(shape=[3, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0],
[1, 1],
[2, 2]])
>>> out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
>>> for out in out_z1_tuple:
... print(out)
Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0],
[1],
[2]])
Tensor(shape=[3, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0],
[1],
[2]])
>>> out_z2 = paddle.nonzero(x2)
>>> print(out_z2)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[1],
[3]])
>>> out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
>>> for out in out_z2_tuple:
... print(out)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[1],
[3]])
"""
list_out = []
shape = x.shape
rank = len(shape)
if in_dynamic_or_pir_mode():
outs = _C_ops.nonzero(x)
else:
check_variable_and_dtype(
x,
'x',
[
'int16',
'int32',
'int64',
'uint16',
'float16',
'float32',
'float64',
'bool',
],
'where_index',
)
helper = LayerHelper("where_index", **locals())
outs = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.INT64
)
helper.append_op(
type='where_index', inputs={'Condition': x}, outputs={'Out': [outs]}
)
if not as_tuple:
return outs
elif rank == 1:
return (outs,)
else:
for i in range(rank):
list_out.append(
paddle.slice(outs, axes=[1], starts=[i], ends=[i + 1])
)
return tuple(list_out)
def sort(x, axis=-1, descending=False, name=None):
"""
Sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
Args:
x (Tensor): An input N-D Tensor with type float32, float64, int16,
int32, int64, uint8.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is Rank(x). when axis<0, it works the same way
as axis+R. Default is -1.
descending (bool, optional) : Descending is a flag, if set to true,
algorithm will sort by descending order, else sort by
ascending order. Default is false.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor: sorted tensor(with the same shape and data type as ``x``).
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[[5,8,9,5],
... [0,0,1,7],
... [6,9,2,4]],
... [[5,2,4,2],
... [4,7,7,9],
... [1,7,0,6]]],
... dtype='float32')
>>> out1 = paddle.sort(x=x, axis=-1)
>>> out2 = paddle.sort(x=x, axis=0)
>>> out3 = paddle.sort(x=x, axis=1)
>>> print(out1.numpy())
[[[5. 5. 8. 9.]
[0. 0. 1. 7.]
[2. 4. 6. 9.]]
[[2. 2. 4. 5.]
[4. 7. 7. 9.]
[0. 1. 6. 7.]]]
>>> print(out2.numpy())
[[[5. 2. 4. 2.]
[0. 0. 1. 7.]
[1. 7. 0. 4.]]
[[5. 8. 9. 5.]
[4. 7. 7. 9.]
[6. 9. 2. 6.]]]
>>> print(out3.numpy())
[[[0. 0. 1. 4.]
[5. 8. 2. 5.]
[6. 9. 9. 7.]]
[[1. 2. 0. 2.]
[4. 7. 4. 6.]
[5. 7. 7. 9.]]]
"""
if in_dynamic_or_pir_mode():
outs, _ = _C_ops.argsort(x, axis, descending)
return outs
else:
helper = LayerHelper("sort", **locals())
out = helper.create_variable_for_type_inference(
dtype=x.dtype, stop_gradient=False
)
ids = helper.create_variable_for_type_inference(
VarDesc.VarType.INT64, stop_gradient=True
)
helper.append_op(
type='argsort',
inputs={'X': x},
outputs={'Out': out, 'Indices': ids},
attrs={'axis': axis, 'descending': descending},
)
return out
def mode(x, axis=-1, keepdim=False, name=None):
"""
Used to find values and indices of the modes at the optional axis.
Args:
x (Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is -1.
keepdim (bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimensions is one fewer than x since the axis is squeezed. Default is False.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
tuple (Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
Examples:
.. code-block:: python
>>> import paddle
>>> tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
>>> res = paddle.mode(tensor, 2)
>>> print(res)
(Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
[[2., 3.],
[5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[2, 2],
[2, 1]]))
"""
if in_dynamic_or_pir_mode():
return _C_ops.mode(x, axis, keepdim)
else:
helper = LayerHelper("mode", **locals())
inputs = {"X": [x]}
attrs = {}
attrs['axis'] = axis
attrs['keepdim'] = keepdim
values = helper.create_variable_for_type_inference(dtype=x.dtype)
indices = helper.create_variable_for_type_inference(dtype="int64")
helper.append_op(
type="mode",
inputs=inputs,
outputs={"Out": [values], "Indices": [indices]},
attrs=attrs,
)
indices.stop_gradient = True
return values, indices
def where(condition, x=None, y=None, name=None):
r"""
Return a Tensor of elements selected from either :attr:`x` or :attr:`y` according to corresponding elements of :attr:`condition`. Concretely,
.. math::
out_i =
\begin{cases}
x_i, & \text{if} \ condition_i \ \text{is} \ True \\
y_i, & \text{if} \ condition_i \ \text{is} \ False \\
\end{cases}.
Notes:
``numpy.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``, please refer to :ref:`api_paddle_nonzero`.
Args:
condition (Tensor): The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
Tensor: A Tensor with the same shape as :attr:`condition` and same data type as :attr:`x` and :attr:`y`.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
>>> y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
>>> out = paddle.where(x>1, x, y)
>>> print(out)
Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
[1. , 1. , 3.20000005, 1.20000005])
>>> out = paddle.where(x>1)
>>> print(out)
(Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[2],
[3]]),)
"""
if np.isscalar(x):
x = paddle.full([1], x, np.array([x]).dtype.name)
if np.isscalar(y):
y = paddle.full([1], y, np.array([y]).dtype.name)
if x is None and y is None:
return nonzero(condition, as_tuple=True)
if x is None or y is None:
raise ValueError("either both or neither of x and y should be given")
condition_shape = list(condition.shape)
x_shape = list(x.shape)
y_shape = list(y.shape)
if x_shape == y_shape and condition_shape == x_shape:
broadcast_condition = condition
broadcast_x = x
broadcast_y = y
else:
zeros_like_x = paddle.zeros_like(x)
zeros_like_y = paddle.zeros_like(y)
zeros_like_condition = paddle.zeros_like(condition)
zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
cast_cond = paddle.cast(condition, x.dtype)
broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
broadcast_x = paddle.add(x, broadcast_zeros)
broadcast_y = paddle.add(y, broadcast_zeros)
broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
broadcast_condition = paddle.cast(broadcast_condition, 'bool')
if in_dynamic_or_pir_mode():
return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
else:
check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
check_variable_and_dtype(
x,
'x',
['uint16', 'float16', 'float32', 'float64', 'int32', 'int64'],
'where',
)
check_variable_and_dtype(
y,
'y',
['uint16', 'float16', 'float32', 'float64', 'int32', 'int64'],
'where',
)
helper = LayerHelper("where", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='where',
inputs={
'Condition': broadcast_condition,
'X': broadcast_x,
'Y': broadcast_y,
},
outputs={'Out': [out]},
)
return out
@inplace_apis_in_dygraph_only
def where_(condition, x=None, y=None, name=None):
r"""
Inplace version of ``where`` API, the output Tensor will be inplaced with input ``x``.
Please refer to :ref:`api_paddle_where`.
"""
if np.isscalar(x) or np.isscalar(y):
raise ValueError("either both or neither of x and y should be given")
if x is None or y is None:
raise ValueError("either both or neither of x and y should be given")
condition_shape = list(condition.shape)
x_shape = list(x.shape)
y_shape = list(y.shape)
if x_shape == y_shape and condition_shape == x_shape:
broadcast_condition = condition
broadcast_x = x
broadcast_y = y
else:
zeros_like_x = paddle.zeros_like(x)
zeros_like_y = paddle.zeros_like(y)
zeros_like_condition = paddle.zeros_like(condition)
zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
cast_cond = paddle.cast(condition, x.dtype)
broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
broadcast_x = x.add_(broadcast_zeros)
broadcast_y = paddle.add(y, broadcast_zeros)
broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
broadcast_condition = paddle.cast(broadcast_condition, 'bool')
if in_dynamic_mode():
return _C_ops.where_(broadcast_condition, broadcast_x, broadcast_y)
def index_sample(x, index):
"""
**IndexSample Layer**
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
.. code-block:: text
Given:
X = [[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]]
Index = [[0, 1, 3],
[0, 2, 4]]
Then:
Out = [[1, 2, 4],
[6, 8, 10]]
Args:
x (Tensor): The source input tensor with 2-D shape. Supported data type is
int32, int64, bfloat16, float16, float32, float64, complex64, complex128.
index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X.
Data type is int32 or int64.
Returns:
output (Tensor): The output is a tensor with the same shape as index.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
... [5.0, 6.0, 7.0, 8.0],
... [9.0, 10.0, 11.0, 12.0]], dtype='float32')
>>> index = paddle.to_tensor([[0, 1, 2],
... [1, 2, 3],
... [0, 0, 0]], dtype='int32')
>>> target = paddle.to_tensor([[100, 200, 300, 400],
... [500, 600, 700, 800],
... [900, 1000, 1100, 1200]], dtype='int32')
>>> out_z1 = paddle.index_sample(x, index)
>>> print(out_z1.numpy())
[[1. 2. 3.]
[6. 7. 8.]
[9. 9. 9.]]
>>> # Use the index of the maximum value by topk op
>>> # get the value of the element of the corresponding index in other tensors
>>> top_value, top_index = paddle.topk(x, k=2)
>>> out_z2 = paddle.index_sample(target, top_index)
>>> print(top_value.numpy())
[[ 4. 3.]
[ 8. 7.]
[12. 11.]]
>>> print(top_index.numpy())
[[3 2]
[3 2]
[3 2]]
>>> print(out_z2.numpy())
[[ 400 300]
[ 800 700]
[1200 1100]]
"""
if in_dynamic_or_pir_mode():
return _C_ops.index_sample(x, index)
else:
helper = LayerHelper("index_sample", **locals())
check_variable_and_dtype(
x,
'x',
[
'uint16',
'float16',
'float32',
'float64',
'int32',
'int64',
'complex64',
'complex128',
],
'paddle.tensor.search.index_sample',
)
check_variable_and_dtype(
index,
'index',
['int32', 'int64'],
'paddle.tensor.search.index_sample',
)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='index_sample',
inputs={'X': x, 'Index': index},
outputs={'Out': out},
)
return out
def masked_select(x, mask, name=None):
"""
Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
which is a tensor with data type of bool.
Args:
x (Tensor): The input Tensor, the data type can be int32, int64, uint16, float16, float32, float64.
mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
A 1-D Tensor which is the same data type as ``x``.
Examples:
.. code-block:: python
>>> import paddle
>>> x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
... [5.0, 6.0, 7.0, 8.0],
... [9.0, 10.0, 11.0, 12.0]])
>>> mask = paddle.to_tensor([[True, False, False, False],
... [True, True, False, False],
... [True, False, False, False]])
>>> out = paddle.masked_select(x, mask)
>>> print(out.numpy())
[1. 5. 6. 9.]
"""
if in_dynamic_or_pir_mode():
return _C_ops.masked_select(x, mask)
else:
check_variable_and_dtype(
x,
'x',
['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
'paddle.tensor.search.mask_select',
)
check_variable_and_dtype(
mask, 'mask', ['bool'], 'paddle.tensor.search.masked_select'
)
helper = LayerHelper("masked_select", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='masked_select',
inputs={'X': x, 'Mask': mask},
outputs={'Y': out},
)
return out
def topk(x, k, axis=None, largest=True, sorted=True, name=None):
"""
Return values and indices of the k largest or smallest at the optional axis.
If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.
Args:
x (Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
k (int, Tensor): The number of top elements to look for along the axis.
axis (int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is x.ndim. when axis < 0, it works the same way
as axis + R. Default is -1.
largest (bool, optional) : largest is a flag, if set to true,
algorithm will sort by descending order, otherwise sort by
ascending order. Default is True.
sorted (bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
Examples:
.. code-block:: python
>>> import paddle
>>> data_1 = paddle.to_tensor([1, 4, 5, 7])
>>> value_1, indices_1 = paddle.topk(data_1, k=1)
>>> print(value_1)
Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
[7])
>>> print(indices_1)
Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
[3])
>>> data_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
>>> value_2, indices_2 = paddle.topk(data_2, k=1)
>>> print(value_2)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[7],
[6]])
>>> print(indices_2)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[3],
[1]])
>>> value_3, indices_3 = paddle.topk(data_2, k=1, axis=-1)
>>> print(value_3)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[7],
[6]])
>>> print(indices_3)
Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True,
[[3],
[1]])
>>> value_4, indices_4 = paddle.topk(data_2, k=1, axis=0)
>>> print(value_4)
Tensor(shape=[1, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
[[2, 6, 5, 7]])
>>> print(indices_4)
Tensor(shape=[1, 4], dtype=int64, place=Place(cpu), stop_gradient=True,