diff --git a/python/paddle/fluid/tests/unittests/npu/test_reshape2_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_reshape2_op_npu.py new file mode 100644 index 0000000000000..885c990c702bd --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_reshape2_op_npu.py @@ -0,0 +1,77 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import numpy as np +import unittest +import sys +sys.path.append("..") +from op_test import OpTest +import paddle +import paddle.fluid as fluid + +paddle.enable_static() +SEED = 2021 + + +@unittest.skipIf(not paddle.is_compiled_with_npu(), + "core is not compiled with NPU") +class TestReshape2(OpTest): + def setUp(self): + self.set_npu() + self.op_type = "reshape2" + self.place = paddle.NPUPlace(0) + + self.init_data() + self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} + self.attrs = {"shape": self.new_shape} + self.outputs = { + "Out": self.inputs["X"].reshape(self.infered_shape), + 'XShape': np.random.random(self.ori_shape).astype("float32") + } + + def set_npu(self): + self.__class__.use_npu = True + + def init_data(self): + self.ori_shape = (2, 100) + self.new_shape = (20, 10) + self.infered_shape = (20, 10) + + def test_check_output(self): + self.check_output_with_place( + self.place, check_dygraph=False, no_check_set=['XShape']) + + def test_check_grad_normal(self): + self.check_grad_with_place( + self.place, ['X'], 'Out', check_dygraph=False) + + +class TestReshape2_case2(TestReshape2): + def init_data(self): + self.ori_shape = (2, 100) + self.new_shape = (-1, 10) + self.infered_shape = (20, 10) + + +class TestReshape2_case3(TestReshape2): + def init_data(self): + self.ori_shape = (100, 5, 6) + self.new_shape = (-1, 0, 3) + self.infered_shape = (200, 5, 3) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/npu/test_reshape_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_reshape_op_npu.py deleted file mode 100644 index fe6eb6b5189cd..0000000000000 --- a/python/paddle/fluid/tests/unittests/npu/test_reshape_op_npu.py +++ /dev/null @@ -1,141 +0,0 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import numpy as np -import unittest -import sys -sys.path.append("..") -from op_test import OpTest -import paddle -import paddle.fluid as fluid - -paddle.enable_static() -SEED = 2021 - - -@unittest.skipIf(not paddle.is_compiled_with_npu(), - "core is not compiled with NPU") -class TestReshape2(OpTest): - def setUp(self): - self.set_npu() - self.op_type = "reshape2" - self.place = paddle.NPUPlace(0) - - self.init_data() - self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} - self.attrs = {"shape": self.new_shape} - self.outputs = { - "Out": self.inputs["X"].reshape(self.infered_shape), - 'XShape': np.random.random(self.ori_shape).astype("float32") - } - - def set_npu(self): - self.__class__.use_npu = True - - def init_data(self): - self.ori_shape = (2, 60) - self.new_shape = (12, 10) - self.infered_shape = (12, 10) - - def test_check_output(self): - self.check_output( - self.place, check_dygraph=False, no_check_set=['XShape']) - - -class TestReshape2_case2(TestReshape2): - def init_data(self): - self.ori_shape = (2, 60) - self.new_shape = (-1, 10) - self.infered_shape = (12, 10) - - -class TestReshape2_case3(TestReshape2): - def init_data(self): - self.ori_shape = (2, 5, 6) - self.new_shape = (-1, 0, 3) - self.infered_shape = (4, 5, 3) - - - # TODO(ascendrc): Add grad test - # def test_check_grad(self): - # if self.dtype == np.float16: - # return - # self.check_grad(['X'], 'Out') - # -@unittest.skipIf(not paddle.is_compiled_with_npu(), - "core is not compiled with NPU") -class TestReshapeNet(unittest.TestCase): - def _test(self, run_npu=True): - main_prog = paddle.static.Program() - startup_prog = paddle.static.Program() - main_prog.random_seed = SEED - startup_prog.random_seed = SEED - np.random.seed(SEED) - - a_np = np.random.random(size=(32, 32)).astype('float32') - b_np = np.random.random(size=(32, 32)).astype('float32') - label_np = np.random.randint(2, size=(32, 1)).astype('int64') - - with paddle.static.program_guard(main_prog, startup_prog): - a = paddle.static.data(name="a", shape=[32, 32], dtype='float32') - b = paddle.static.data(name="b", shape=[32, 32], dtype='float32') - label = paddle.static.data( - name="label", shape=[32, 1], dtype='int64') - - sum = paddle.add(a, b) - z = paddle.reshape(sum, shape=[32, 32]) - - fc_1 = fluid.layers.fc(input=z, size=128) - prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') - - cost = fluid.layers.cross_entropy(input=prediction, label=label) - loss = fluid.layers.reduce_mean(cost) - sgd = fluid.optimizer.SGD(learning_rate=0.01) - sgd.minimize(loss) - - if run_npu: - place = paddle.NPUPlace(0) - else: - place = paddle.CPUPlace() - - exe = paddle.static.Executor(place) - exe.run(startup_prog) - - print("Start run on {}".format(place)) - for epoch in range(100): - - pred_res, loss_res = exe.run( - main_prog, - feed={"a": a_np, - "b": b_np, - "label": label_np}, - fetch_list=[prediction, loss]) - if epoch % 10 == 0: - print("Epoch {} | Prediction[0]: {}, Loss: {}".format( - epoch, pred_res[0], loss_res)) - - return pred_res, loss_res - - def test_npu(self): - cpu_pred, cpu_loss = self._test(False) - npu_pred, npu_loss = self._test(True) - - self.assertTrue(np.allclose(npu_pred, cpu_pred)) - self.assertTrue(np.allclose(npu_loss, cpu_loss)) - - -if __name__ == '__main__': - unittest.main()