-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
softmax_triplet_with_center.yaml
187 lines (181 loc) · 4.46 KB
/
softmax_triplet_with_center.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 40
eval_during_train: True
eval_interval: 10
epochs: 120
print_batch_step: 20
use_visualdl: False
eval_mode: "retrieval"
retrieval_feature_from: "features" # 'backbone' or 'features'
re_ranking: False
# used for static mode and model export
image_shape: [3, 256, 128]
save_inference_dir: "./inference"
# model architecture
Arch:
name: "RecModel"
infer_output_key: "features"
infer_add_softmax: False
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/others/resnet50-19c8e357_torch2paddle.pdparams
stem_act: null
BackboneStopLayer:
name: "flatten"
Neck:
name: BNNeck
num_features: &feat_dim 2048
weight_attr:
initializer:
name: Constant
value: 1.0
bias_attr:
initializer:
name: Constant
value: 0.0
learning_rate: 1.0e-20 # NOTE: Temporarily set lr small enough to freeze the bias to zero
Head:
name: "FC"
embedding_size: *feat_dim
class_num: &class_num 751
weight_attr:
initializer:
name: Normal
std: 0.001
bias_attr: False
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
- TripletLossV2:
weight: 1.0
margin: 0.3
normalize_feature: False
feature_from: "backbone"
- CenterLoss:
weight: 0.0005
num_classes: *class_num
feat_dim: *feat_dim
feature_from: "backbone"
Eval:
- CELoss:
weight: 1.0
Optimizer:
- Adam:
scope: RecModel
lr:
name: Piecewise
decay_epochs: [30, 60]
values: [0.00035, 0.000035, 0.0000035]
warmup_epoch: 10
warmup_start_lr: 0.0000035
by_epoch: True
last_epoch: 0
regularizer:
name: "L2"
coeff: 0.0005
- SGD:
scope: CenterLoss
lr:
name: Constant
learning_rate: 1000.0 # NOTE: set to ori_lr*(1/centerloss_weight) to avoid manually scaling centers' gradidents.
# data loader for train and eval
DataLoader:
Train:
dataset:
name: "Market1501"
image_root: "./dataset/"
cls_label_path: "bounding_box_train"
backend: "pil"
transform_ops:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: "bilinear"
backend: "pil"
- RandFlipImage:
flip_code: 1
- Pad:
padding: 10
- RandCropImageV2:
size: [128, 256]
- ToTensor:
- Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
- RandomErasing:
EPSILON: 0.5
sl: 0.02
sh: 0.4
r1: 0.3
mean: [0.485, 0.456, 0.406]
sampler:
name: DistributedRandomIdentitySampler
batch_size: 64
num_instances: 4
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
Query:
dataset:
name: "Market1501"
image_root: "./dataset/"
cls_label_path: "query"
backend: "pil"
transform_ops:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: "bilinear"
backend: "pil"
- ToTensor:
- Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Gallery:
dataset:
name: "Market1501"
image_root: "./dataset/"
cls_label_path: "bounding_box_test"
backend: "pil"
transform_ops:
- ResizeImage:
size: [128, 256]
return_numpy: False
interpolation: "bilinear"
backend: "pil"
- ToTensor:
- Normalize:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}