We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The text was updated successfully, but these errors were encountered:
您好!很多应用场景其实N和Tiny级别的算法就够用了。大佬可否分享下,这两个级别的参数配置多少呢? 我自己的N级别的配置如下: ResNet: depth: 18 variant: d return_idx: [1, 2, 3] freeze_at: -1 freeze_norm: false norm_decay: 0.
HybridEncoder: hidden_dim: 192 use_encoder_idx: [2] num_encoder_layers: 1 encoder_layer: name: TransformerLayer d_model: 192 nhead: 8 dim_feedforward: 512 dropout: 0. activation: 'gelu' expansion: 0.5 depth_mult: 1.0
RTDETRTransformer: eval_idx: -1 num_decoder_layers: 3 另手动将backbone的resnet部分最后输出为128通道。经测试精度不算很好,应该和学习率、epoch(80)也有关系。 麻烦大佬分享一下配置,万分感谢!
Sorry, something went wrong.
目前这个是最小的 再小的没有了 https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/rtdetr/rtdetr_r18vd_6x_coco.yml
再小的有几个位置可以调一调
感谢大佬回复! HGnet或者ResNet部分不需要调整吗? 我想获取传统yolo系列N和tiny级别的算法。 另外,因为目前训练COCO是用了预训练模型的,我理解,如果您能分享下训练object365的学习率等配置,是不是从0开始训练COCO也会更好
backbone有预训练一般不调整 更小的话去尝试换更小的backbone 比如mobilenet等等
lyuwenyu
No branches or pull requests
是否愿意提交PR Are you willing to submit a PR?
The text was updated successfully, but these errors were encountered: