-
Notifications
You must be signed in to change notification settings - Fork 726
/
dygraph_model.py
83 lines (71 loc) · 3.04 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
max_sentence = config.get('hyper_parameters.max_sentence', 50)
max_sents = config.get('hyper_parameters.max_sents', 30)
max_entity_num = config.get('hyper_parameters.max_entity_num', 10)
npratio = config.get('hyper_parameters.npratio', 4)
hidden_size = config.get('hyper_parameters.hidden_size', 400)
embedding_size = config.get('hyper_parameters.embedding_size', 300)
vocab_size = config.get('hyper_parameters.vocab_size', 3030)
kim_model = net.KIMLayer(
vocab_size,
embedding_size,
hidden_size,
max_sents,
max_sentence,
max_entity_num, )
return kim_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data):
return [x.squeeze(0) for x in batch_data]
# define loss function by predicts and label
def create_loss(self, pred, label):
return F.cross_entropy(pred, label)
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.00005)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["Acc"]
metrics_list = [paddle.metric.Accuracy()]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
*inputs, labels = self.create_feeds(batch_data)
labels = labels.argmax(-1, keepdim=True)
prediction = dy_model.forward(*inputs)
loss = self.create_loss(prediction, labels)
# update metrics
print_dict = {"loss": loss}
correct = metrics_list[0].compute(prediction, labels)
metrics_list[0].update(correct)
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
inputs = self.create_feeds(batch_data)
prediction = dy_model.forward(*inputs)
# update metrics
print_dict = {"y_pred": prediction, }
return metrics_list, print_dict