forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·151 lines (135 loc) · 4.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
import datasets, models
from scripts.train import train
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of training
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--iters',
dest='iters',
help='iters for training',
type=int,
default=None)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=None)
parser.add_argument(
'--save_interval',
dest='save_interval',
help='How many iters to save a model snapshot once during training.',
type=int,
default=1000)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of resume model',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--keep_checkpoint_max',
dest='keep_checkpoint_max',
help='Maximum number of checkpoints to save',
type=int,
default=5)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Eval while training',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
action='store_true')
return parser.parse_args()
def main(args):
env_info = get_sys_env()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(
args.cfg,
learning_rate=args.learning_rate,
iters=args.iters,
batch_size=args.batch_size)
train_dataset = cfg.train_dataset
if train_dataset is None:
raise RuntimeError(
'The training dataset is not specified in the configuration file.')
val_dataset = cfg.val_dataset if args.do_eval else None
losses = cfg.loss
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
train(
cfg.model,
train_dataset,
val_dataset=val_dataset,
aug_eval=True,
flip_horizontal_eval=False,
optimizer=cfg.optimizer,
save_dir=args.save_dir,
iters=cfg.iters,
batch_size=cfg.batch_size,
resume_model=args.resume_model,
save_interval=args.save_interval,
log_iters=args.log_iters,
num_workers=args.num_workers,
use_vdl=args.use_vdl,
losses=losses,
keep_checkpoint_max=args.keep_checkpoint_max)
if __name__ == '__main__':
args = parse_args()
main(args)