-
Notifications
You must be signed in to change notification settings - Fork 5
/
trainer_throwing.py
326 lines (290 loc) · 13.8 KB
/
trainer_throwing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Non-commercial Use License
Copyright (c) 2021 Siemens Technology
This software, along with associated documentation files (the "Software"), is
provided for the sole purpose of providing Proof of Concept. Any commercial
uses of the Software including, but not limited to, the rights to sublicense,
and/or sell copies of the Software are prohibited and are subject to a
separate licensing agreement with Siemens. This software may be proprietary
to Siemens and may be covered by patent and copyright laws. Processes
controlled by the Software are patent pending.
The above copyright notice and this permission notice shall remain attached
to the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
# Standard library imports
from argparse import ArgumentParser, Namespace
import os, sys
import json
from networkx.algorithms.planar_drawing import set_position
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
# PARENT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# sys.path.append(PARENT_DIR)
# Third party imports
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers as pl_loggers
from torchdiffeq import odeint
# local application imports
from systems.bouncing_disks import BouncingDisks
from models.lagrangian import CLNNwC
from models.hamiltonian import CHNNwC
from models.dynamics import ConstrainedLagrangianDynamics
# from baselines.MLP_CD_CLNN import MLP_CD_CLNN
# from baselines.IN_CP_CLNN import IN_CP_CLNN
# from baselines.IN_CP_SP import IN_CP_SP
from utils import dummy_dataloader
from trainer import Model as Dynamics_pl_model
seed_everything(0)
def str_to_class(classname):
return getattr(sys.modules[__name__], classname)
def collect_tensors(field, outputs):
res = torch.stack([log[field] for log in outputs], dim=0)
if res.ndim == 1:
return res
else:
return res.flatten(0, 1)
class Model(pl.LightningModule):
def __init__(self, hparams, **kwargs):
super().__init__()
hparams = Namespace(**hparams) if type(hparams) is dict else hparams
vars(hparams).update(**kwargs)
if hparams.body_kwargs_file == "":
body = str_to_class(hparams.body_class)()
else:
with open(os.path.join(THIS_DIR, "examples", hparams.body_kwargs_file+".json"), "r") as file:
body_kwargs = json.load(file)
body = str_to_class(hparams.body_class)(hparams.body_kwargs_file,
is_reg_data=False,
is_reg_model=False,
is_lcp_data=False,
is_lcp_model=False,
**body_kwargs)
vars(hparams).update(**body_kwargs)
vars(hparams).update(
dt=body.dt,
integration_time=body.integration_time,
is_homo=body.is_homo,
body=body
)
##### target
self.register_buffer("target_xy", torch.tensor(hparams.target_xy))
# initial condition and time step
self.register_buffer("one_time_step", torch.tensor([0, body.dt]))
self.register_buffer("initial_position", torch.tensor(hparams.initial_position))
if hparams.task == "hit":
self.initial_velocity = nn.Parameter(torch.zeros(3))
else:
self.register_buffer("initial_vxvy", torch.tensor(hparams.initial_vxvy))
self.initial_w = nn.Parameter(torch.zeros(1))
## we build initial velocity inside training step
# get constant
self.register_buffer("Minv", body.Minv.to(torch.float32))
self.register_buffer("mus", body.mus.to(torch.float32))
self.register_buffer("cors", body.cors.to(torch.float32))
self.potential = body.potential
self.Minv_op = body.Minv_op
##############
self.dynamics = ConstrainedLagrangianDynamics(
self.potential,
self.Minv_op,
body.DPhi,
(body.n, body.d)
)
#############
#############
if hparams.use_learned_properties:
if not hparams.ckpt_path:
raise ValueError("must provide a path to the checkpoint when setting --use-learned-properties to be true")
dynamics_pl_model = Dynamics_pl_model.load_from_checkpoint(hparams.ckpt_path)
assert isinstance(dynamics_pl_model.model, CLNNwC)
dynamics_pl_model.freeze() # very important to freeze the model so that the parameters are fixed
self.register_buffer("learned_mus", F.relu(dynamics_pl_model.model.mu_params * torch.ones(4)))
self.register_buffer("learned_cors", F.hardsigmoid(dynamics_pl_model.model.cor_params * torch.ones(4)))
self.register_buffer("learned_Minv", dynamics_pl_model.model.Minv)
self.learned_potential = dynamics_pl_model.model.potential # need to make sure the model is freezed
self.learned_Minv_op = dynamics_pl_model.model.Minv_op # need to make sure the model is freezed
self.learned_dynamics = ConstrainedLagrangianDynamics(
self.learned_potential,
self.learned_Minv_op,
body.DPhi,
(body.n, body.d)
)
self.dynamics_pl_mnodel = dynamics_pl_model # add a pointer to check require_grad info
self.hparams = hparams
self.body = body
self.history = []
def configure_optimizers(self):
optimizer = getattr(torch.optim, self.hparams.optimizer_class)(
self.parameters(),
lr = self.hparams.lr,
weight_decay = self.hparams.weight_decay
)
if self.hparams.SGDR:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=self.hparams.max_epochs)
return [optimizer], [scheduler]
else:
return optimizer
def train_dataloader(self):
return dummy_dataloader()
def val_dataloader(self) :
return dummy_dataloader()
def test_dataloader(self):
return dummy_dataloader()
def mae(self, pred_zts, true_zts):
return (pred_zts - true_zts).abs().mean()
def get_z0(self, x0, v0):
""" x0: (3,)
v0: (3,)
"""
xv0 = torch.stack([x0, v0], dim=0)[None, :, None, :]
return self.body.generalized_to_cartesian(xv0)
def simulate(self):
# generate a trajectory based on the parametrized initial condition
################################
##### These are fixed
# training
if self.training and self.hparams.use_learned_properties:
mus = self.learned_mus
cors = self.learned_cors
Minv = self.learned_Minv
dynamics = self.learned_dynamics
else:
mus = self.mus
cors = self.cors
Minv = self.Minv
dynamics = self.dynamics
##### Initial conditions are learnable
if self.hparams.task == "vertical_nospin":
self.initial_velocity = torch.cat([self.initial_vxvy, self.initial_w])
z0 = self.get_z0(self.initial_position, self.initial_velocity)
##### integration
zt = z0.reshape(1, -1)
zT = [zt]
vy = [zt.reshape(1, 2, 1, 3, 2)[0, 1, 0, 0, 1]] # bs, 2, n_o, n_p, d
# status -1: if vy[0] is positive
# 0: going down
# 1: from hit the groud to the top set_position
# 2: from the top position to the second time that hit the ground
status = [0] if self.initial_velocity[1] < 0 else [-1]
while not self.is_terminate(status):
zt_n = odeint(dynamics, zt, self.one_time_step, method=self.hparams.solver)[1]
zt_n, _ = self.body.impulse_solver.add_impulse(zt_n, mus, cors, Minv)
zt = zt_n
zT.append(zt)
vy.append(zt.reshape(1, 2, 1, 3, 2)[0, 1, 0, 0, 1])
status.append(status[-1]+1 if vy[-1]*vy[-2] < 0 or vy[-1] == 0 else status[-1])
# calculate the loss model.hparams.task
if self.hparams.task == "vertical_nospin":
# get those in zT such that status == 1
for i in range(len(status)):
if status[i] == 1:
idx = i-1
break
# ground_xy = zT[idx].reshape(1, 2, 1, 3, 2)[0, 0, 0, 0]
final_x = zT[-2].reshape(1, 2, 1, 3, 2)[0, 0, 0, 0, 0]
vx_after_contact = zT[idx+2].reshape(1, 2, 1, 3, 2)[0, 1, 0, 0, 0]
x_after_contact = zT[idx+2].reshape(1, 2, 1, 3, 2)[0, 0, 0, 0, 0]
loss = self.mae(vx_after_contact, torch.zeros_like(vx_after_contact)) + self.mae(x_after_contact, final_x)
# if self.hparams.task == "vertical_nospin":
# # penalize rotation
# vs = zT[idx].reshape(1, 2, 1, 3, 2)[0, 1, 0, :]
# loss = loss + self.mae(vs[1], vs[0]) + self.mae(vs[2], vs[0])
elif self.hparams.task == "hit":
# get the last point where status == 2
assert status[-2] == 2
pred_xy = zT[-2].reshape(1, 2, 1, 3, 2)[0, 0, 0, 0]
loss = self.mae(pred_xy, self.target_xy)
else:
raise NotImplementedError
return zT, status, loss
def training_step(self, batch, batch_idx):
*_, loss = self.simulate()
self.log('train/loss', loss, prog_bar=True)
self.train_loss = loss.item()
return loss
def validation_step(self, batch, batch_idx):
if self.hparams.use_learned_properties:
*_, loss = self.simulate()
scaler_loss = loss.item()
else: # here validation would be the same as training
scaler_loss = getattr(self, 'train_loss', 0)
if hasattr(self, "initial_velocity"): # make pt-lightning happy
self.log('val/loss', scaler_loss, prog_bar=True)
self.log('vx0', self.initial_velocity[0], prog_bar=True)
self.log('vy0', self.initial_velocity[1], prog_bar=True)
self.log('w0', self.initial_velocity[2], prog_bar=True)
self.history.append(self.initial_velocity.clone().detach().cpu().numpy())
return scaler_loss
def test_step(self, batch, batch_idx):
return self.simulate()
def is_terminate(self, status):
if self.hparams.task == "vertical" or self.hparams.task == "vertical_nospin":
return True if status[-1] == 2 else False
elif self.hparams.task == "hit":
return True if status[-1] == 3 else False
else:
raise NotImplementedError
def on_save_checkpoint(self, checkpoint):
checkpoint['history'] = self.history
def on_load_checkpoint(self, checkpoint):
self.history = checkpoint['history']
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--task", type=str, default="hit", choices=["hit", "vertical_nospin"])
parser.add_argument("--initial-position", type=float, nargs=3, default=[0.25, 0.65, 0.0])
parser.add_argument("--target-xy", type=float, nargs=2, default=[0.75, 0.1])
parser.add_argument("--initial-vxvy", type=float, nargs=2, default=[0.6, 0.4])
parser.add_argument("--use-learned-properties", action="store_true", default=False)
parser.add_argument("--ckpt-path", type=str, default="")
# dataset
parser.add_argument("--body-class", type=str, default="BouncingDisks")
parser.add_argument("--body-kwargs-file", type=str, default="BD1_homo_cor0.8_mu0.2")
parser.add_argument("--dataset-class", type=str, default="RigidBodyDataset")
# optimizer
parser.add_argument("--lr", type=float, default=1e-1, help="learning rate")
parser.add_argument("--optimizer-class", type=str, default="AdamW")
parser.add_argument("--weight-decay", type=float, default=1e-4)
parser.add_argument("--SGDR", action="store_true")
parser.add_argument("--no-SGDR", action="store_false", dest='SGDR')
parser.set_defaults(SGDR=True)
# model
parser.add_argument("--solver", type=str, default="rk4")
return parser
if __name__ == "__main__":
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
parser = Model.add_model_specific_args(parser)
hparams = parser.parse_args()
model = Model(hparams)
is_learned_model = "_learned" if hparams.ckpt_path else ""
savedir = os.path.join(
".",
"logs",
hparams.task + "_" + hparams.body_kwargs_file + is_learned_model
)
tb_logger = pl_loggers.TensorBoardLogger(save_dir=savedir, name='')
checkpoint = ModelCheckpoint(monitor="val/loss",
save_top_k=1,
save_last=True,
dirpath=tb_logger.log_dir
)
trainer = Trainer.from_argparse_args(hparams,
deterministic=True,
terminate_on_nan=True,
callbacks=[checkpoint],
logger=[tb_logger])
trainer.fit(model)