-
Notifications
You must be signed in to change notification settings - Fork 0
/
run-s3dis-Sqn.sh
73 lines (64 loc) · 2.75 KB
/
run-s3dis-Sqn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/bin/bash
MODES=('train')
# MODES=('train' 'test')
gpu=0
# 4 costs about 8GB GPU, others can be used on grp server GPUs
BATCH_SIZES=(3) # 3 just 8GB, 4--> OOM on 1080 GPU
# VAL_BATCH_SIZES=(20) # 16 10 8 6
# 8 works on my nvidia 1080 gpu, others can be tried on grp server GPUs
VAL_BATCH_SIZES=(4) # 6-->system collapse
num_points=40960
max_epoch=100 # 400
# KEY: weak label ratio is defined as the number of weak points over the raw poinits
# WEAK_LABEL_RATIOS=(0.001)
# WEAK_LABEL_RATIOS=(0.1 0.01 0.001 0.0001)
# WEAK_LABEL_RATIOS=(0.001 0.0001)
# WEAK_LABEL_RATIOS=(0.00001 0.00005) # 0.01 can not on 1080gpu, suffer OOM
# WEAK_LABEL_RATIOS=(0.00001 0.00002 0.00005)
WEAK_LABEL_RATIOS=(0.0001 0.00005 0.00002)
# 0.005 batch_size=2, OOM
# 0.001 batch_size 3, val_batch_size 4
# WEAK_LABEL_RATIOS=(0.001 0.01 0.0001)
# new weak_label_ratio refers to weak points/#raw_pc, has a 15 times relation
# TODO: normalize the ratios
# WEAK_LABEL_RATIOS=(0.015 0.15 0.0015) # corresponds to 0.001/0.01/0.0001
# TODO: ablation study
# num_k_query_pts
# how to concat features
# CONCAT_TYPES=('1234' '123' '234' '12' '1')
CONCAT_TYPES=('1234')
echo "training using WCE loss"
for mode in "${MODES[@]}"; do
for weak_label_ratio in "${WEAK_LABEL_RATIOS[@]}"; do
for batch_size in "${BATCH_SIZES[@]}"; do
for val_batch_size in "${VAL_BATCH_SIZES[@]}"; do
for concat_type in "${CONCAT_TYPES[@]}"; do
echo "batch_size: ${batch_size}"
echo "val_batch_size: ${val_batch_size}"
echo "num_points: ${num_points}"
echo "max_epoch: ${max_epoch}"
echo "weak_label_ratio: ${weak_label_ratio}"
echo "concat_type: ${concat_type}"
time python -B main_S3DIS_Sqn.py \
--gpu ${gpu} \
--mode ${mode} \
--test_area 5 \
--batch_size ${batch_size} \
--val_batch_size ${val_batch_size} \
--num_points ${num_points} \
--max_epoch ${max_epoch} \
--weak_label_ratio ${weak_label_ratio} \
--concat_type ${concat_type}
echo "batch_size: ${batch_size}"
echo "val_batch_size: ${val_batch_size}"
echo "num_points: ${num_points}"
echo "max_epoch: ${max_epoch}"
echo "weak_label_ratio: ${weak_label_ratio}"
echo "concat_type: ${concat_type}"
done
done
done
done
done
echo "training using WCE loss"
echo "finish training."