This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
cplx-nums.xml
226 lines (209 loc) · 9.44 KB
/
cplx-nums.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<appendix xml:id="complex-numbers">
<title>Complex Numbers</title>
<!-- <objectives> -->
<!-- <ol> -->
<!-- <li>Become comfortable doing arithmetic with complex numbers.</li> -->
<!-- <li><em>Vocabulary words:</em> <term>imaginary number</term>, <term>complex number</term>, <term>complex conjugate</term>.</li> -->
<!-- </ol> -->
<!-- </objectives> -->
<p>
In this Appendix we give a brief review of the arithmetic and basic properties of the complex numbers.
</p>
<p>
As motivation, notice that the rotation matrix
<me>A = \mat{0 -1; 1 0}</me>
has characteristic polynomial <m>f(\lambda) = \lambda^2 + 1</m>. A zero of this function is a square root of <m>-1</m>. If we want this polynomial to have a root, then we have to use a larger number system: we need to declare by <em>fiat</em> that there exists a square root of <m>-1</m>.
</p>
<definition>
<idx><h>Complex numbers</h><h>definition of</h></idx>
<idx><h>Imaginary number</h><see>Complex numbers</see></idx>
<notation><usage>\C</usage><description>The complex numbers</description></notation>
<statement>
<p>
<ol>
<li>
The <term>imaginary number</term> <m>i</m> is defined to satisfy the equation <m>i^2 = -1</m>.
</li>
<li>
A <term>complex number</term> is a number of the form <m>a+bi</m>, where <m>a,b</m> are real numbers.
</li>
</ol>
The set of all complex numbers is denoted <m>\C</m>.
</p>
</statement>
</definition>
<p>
The real numbers are just the complex numbers of the form <m>a + 0i</m>, so that <m>\R</m> is contained in <m>\C</m>.
</p>
<p>
We can identify <m>\C</m> with <m>\R^2</m> by <m>a+bi \longleftrightarrow {a\choose b}</m>. So when we draw a picture of <m>\C</m>, we draw the plane:
<latex-code>
<![CDATA[
\begin{tikzpicture}[whitebg nodes, thin border nodes]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[thick, ->] (-2,0) -- (2,0);
\draw[<-, overlay] (-2.05,0) -- (-2.5,0) node[left] {real axis};
\draw[thick, ->] (0,-2) -- (0,2);
\draw[<-, overlay] (-.05,-1.5) -- ++(-2.5,0) node[left] {imaginary axis};
\point["$1$" above] at (1,0);
\point["$i$" left] at (0,1);
\point at (0,0);
\point["$1-i$" below] at (1,-1);
\end{tikzpicture}
]]>
</latex-code>
</p>
<note hide-type="true">
<title>Arithmetic of Complex Numbers</title>
<idx><h>Complex numbers</h><h>arithmetic of</h></idx>
<p>
We can perform all of the usual arithmetic operations on complex numbers: add, subtract, multiply, divide, absolute value. There is also an important new operation called complex conjugation.
<ul>
<li>
<em>Addition</em> is performed componentwise:
<me>
(a + bi) + (c + di) = (a + c) + (b + d)i.
</me>
</li>
<li>
<em>Multiplication</em> is performed using distributivity and <m>i^2=-1</m>:
<me>
(a+bi)(c+di) = ac + adi + bci + bdi^2 = (ac-bd) + (ad+bc)i.
</me>
</li>
<li>
<idx><h>Complex numbers</h><h>conjugation</h></idx>
<idx><h>Complex conjugation</h><see>Complex numbers</see></idx>
<notation><usage>\bar z</usage><description>Complex conjugate</description></notation>
<em>Complex conjugation</em> replaces <m>i</m> with <m>-i</m>, and is denoted with a bar:
<me>
\bar{a+bi} = a - bi.
</me>
The number <m>\bar{a+bi}</m> is called the <term>complex conjugate</term> of <m>a+bi</m>. One checks that for any two complex numbers <m>z,w</m>, we have
<me>
\bar{z+w} = \bar z + \bar w \sptxt{and} \bar{zw} = \bar z\cdot\bar w.
</me>
Also, <m>(a+bi)(a-bi) = a^2 + b^2</m>, so <m>z\bar z</m> is a nonnegative <em>real</em> number for any complex number <m>z</m>.
</li>
<li>
<idx><h>Complex numbers</h><h>absolute value</h></idx>
The <em>absolute value</em> of a complex number <m>z</m> is the real number <m>|z| = \sqrt{z\bar z}</m>:
<me>
|a+bi| = \sqrt{a^2 + b^2}.
</me>
One chacks that <m>|zw| = |z|\cdot|w|.</m>
</li>
<li>
<em>Division</em> by a nonzero real number proceeds componentwise:
<me>\frac{a+bi}c = \frac ac + \frac bci.</me>
</li>
<li>
<em>Division</em> by a nonzero complex number requires multiplying the numerator and denominator by the complex conjugate of the denominator:
<me>\frac zw = \frac{z\bar w}{w\bar w} = \frac{z\bar w}{|w|^2}.</me>
For example,
<me>\frac{1+i}{1-i} = \frac{(1+i)^2}{1^2+(-1)^2} = \frac{1+2i+i^2}2 = i.</me>
</li>
<li>
<idx><h>Complex numbers</h><h>real and imaginary parts of</h></idx>
<idx><h>Real part</h><see>Complex numbers</see></idx>
<idx><h>Imaginary part</h><see>Complex numbers</see></idx>
<notation><usage>\Re(z)</usage><description>Real part of a complex number</description></notation>
<notation><usage>\Im(z)</usage><description>Imaginary part of a complex number</description></notation>
The <em>real</em> and <em>imaginary</em> parts of a complex number are
<me>\Re(a+bi) = a \qquad \Im(a+bi) = b.</me>
</li>
</ul>
</p>
</note>
<p>
The point of introducing complex numbers is to find roots of polynomials. It turns out that introducing <m>i</m> is sufficent to find the roots of any polynomial.
</p>
<theorem type-name="Fundamental Theorem of Algebra" xml:id="fund-thm-alg">
<idx><h>Fundamental theorem of algebra</h></idx>
<idx><h>Polynomial</h><h>complex roots</h></idx>
<statement>
<p>
Every polynomial of degree <m>n</m> has exactly <m>n</m> (real and) complex roots, counted with multiplicity.
</p>
<p>
Equivalently, if <m>f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0</m> is a polynomial of degree <m>n</m>, then <m>f</m> factors as
<me>
f(x) = (x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_n)
</me>
for (not necessarily distinct) complex numbers <m>\lambda_1,\lambda_2,\ldots,\lambda_n</m>.
</p>
</statement>
</theorem>
<specialcase hide-type="true">
<title>Degree-2 Polynomials</title>
<idx><h>Quadratic formula</h></idx>
<idx><h>Polynomial</h><h>quadratic</h></idx>
<p>
The quadratic formula gives the roots of a degree-2 polynomial, real or complex:
<me>
f(x) = x^2 + bx + c \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}2.
</me>
</p>
<p>
For example, if <m>f(x) = x^2 - \sqrt 2x + 1</m>, then
<me>
x = \frac{\sqrt 2\pm\sqrt{-2}}2 = \frac{\sqrt 2}2(1\pm i)
= \frac{1\pm i}{\sqrt 2}.
</me>
Note that if <m>b,c</m> are real numbers, then the two roots are complex conjugates.
</p>
</specialcase>
<p>
A complex number <m>z</m> is real if and only if <m>z = \bar z</m>. This leads to the following observation.
</p>
<bluebox type-name="Note" xml:id="cplx-nums-root-pairs">
<idx><h>Polynomial</h><h>conjugate roots</h></idx>
<p>
If <m>f</m> is a polynomial with real coefficients, and if <m>\lambda</m> is a complex root of <m>f</m>, then so is <m>\bar\lambda</m>:
<me>
\begin{split}
0 = \bar{f(\lambda)}
\amp= \bar{\lambda^n + a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0} \\
\amp= \bar\lambda{}^n + a_{n-1}\bar\lambda{}^{n-1}+\cdots+a_1\bar\lambda+a_0
= f\bigl(\bar\lambda\bigr).
\end{split}
</me>
Therefore, complex roots of real polynomials come in <em>conjugate pairs</em>.
</p>
</bluebox>
<specialcase hide-type="true">
<title>Degree-3 Polynomials</title>
<idx><h>Polynomial</h><h>cubic</h></idx>
<p>
A real cubic polynomial has either three real roots, or one real root and a conjugate pair of complex roots.
</p>
<p>
For example, <m>f(x) = x^3-x = x(x-1)(x+1)</m> has three real roots; its graph looks like this:
<latex-code>
<![CDATA[
\begin{tikzpicture}[domain=-1.5:1.5,smooth]
\draw (-2,0) -- (2,0);
\draw[color=seq-red, <->] plot (\x,\x^3-\x);
\end{tikzpicture}
]]>
</latex-code>
On the other hand, the polynomial <me>g(x) = x^3-5x^2+x-5 = (x-5)(x^2+1) = (x-5)(x+i)(x-i)</me> has one real root at <m>5</m> and a conjugate pair of complex roots <m>\pm i</m>. Its graph looks like this:
<latex-code>
<![CDATA[
\begin{tikzpicture}[domain=-.5:.5,smooth,xscale=-4,yscale=3]
\draw (-.5,-4.7) -- (.5,-4.7);
\draw[color=seq-red, <->] plot (\x,\x^3-5*\x^2+\x-5);
\end{tikzpicture}
]]>
</latex-code>
</p>
</specialcase>
</appendix>