This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
determinant-volume.xml
1015 lines (952 loc) · 47.5 KB
/
determinant-volume.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="determinants-volumes">
<title>Determinants and Volumes</title>
<objectives>
<ol>
<li>Understand the relationship between the determinant of a matrix and the volume of a parallelepiped.</li>
<li>Learn to use determinants to compute volumes of parallelograms and triangles.</li>
<li>Learn to use determinants to compute the volume of some curvy shapes like ellipses.</li>
<li><em>Pictures:</em> parallelepiped, the image of a curvy shape under a linear transformation.</li>
<li><em>Theorem:</em> determinants and volumes.</li>
<li><em>Vocabulary word:</em> <term>parallelepiped</term>.</li>
</ol>
</objectives>
<introduction>
<p>
In this section we give a geometric interpretation of determinants, in terms of <em>volumes.</em> This will shed light on the reason behind three of the four <xref ref="det-defn-the-defn" text="title">defining properties of the determinant</xref>. It is also a crucial ingredient in the change-of-variables formula in multivariable calculus.
</p>
</introduction>
<subsection>
<title>Parallelograms and Paralellepipeds</title>
<p>
The determinant computes the volume of the following kind of geometric object.
</p>
<definition>
<idx><h>Parallelepiped</h><h>definition of</h></idx>
<statement>
<p>
The <term>paralellepiped</term> determined by <m>n</m> vectors <m>v_1, v_2,\ldots,v_n</m> in <m>\R^n</m> is the subset
<me>
P = \bigl\{a_1x_1 + a_2x_2 + \cdots + a_nx_n \bigm| 0 \leq a_1,a_2,\ldots,a_n\leq 1\bigr\}.
</me>
</p>
</statement>
</definition>
<p>
In other words, a parallelepiped is the set of all linear combinations of <m>n</m> vectors with coefficients in <m>[0,1]</m>. We can draw parallelepipeds using the parallelogram law for vector addition.
</p>
<specialcase>
<title>The unit cube</title>
<idx><h>Unit cube</h></idx>
<p>
The parallelepiped determined by the standard coordinate vectors <m>e_1,e_2,\ldots,e_n</m> is the unit <m>n</m>-dimensional cube.
<latex-code mode="bare">
\usetikzlibrary{math}
</latex-code>
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=2]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$e_2$} (0,1);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap]{$e_1$} (1,0);
\end{tikzpicture}
\qquad\qquad
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=-1cm]
\def\va{(1,0,0)}
\def\vb{(0,1,0)}
\def\vc{(0,0,1)}
\tikzmath{
coordinate \vab;
coordinate \vac;
coordinate \vbc;
\vab = \va + \vb;
\vac = \va + \vc;
\vbc = \vb + \vc;
}
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\vb}, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\va}, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\vc}, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\draw[vector, opacity=.4] (0,0,0) -- node[auto] {$e_1$} \va;
\draw[vector, opacity=.4] (0,0,0) -- node[auto, swap] {$e_2$} \vb;
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.3] {$e_3$} \vc;
\end{tikzpicture}
</latex-code>
</p>
</specialcase>
<specialcase>
<title>Parallelograms</title>
<idx><h>Parallelepiped</h><h>parallelogram</h></idx>
<idx><h>Parallelogram</h><see>Parallelepiped</see></idx>
<p>
When <m>n = 2</m>, a paralellepiped is just a paralellogram in <m>\R^2</m>. Note that the edges come in parallel pairs.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1.3]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_1$} (2,1);
\node at (1.5,1.5) {$P$};
\end{tikzpicture}
]]>
</latex-code>
</p>
</specialcase>
<specialcase>
<p>
When <m>n=3</m>, a parallelepiped is a kind of a skewed cube. Note that the faces come in parallel pairs.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, myxyz, scale=2]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto,swap] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\node at (0,1.2,1.2) {$P$};
\end{tikzpicture}
]]>
</latex-code>
</p>
</specialcase>
<p>
When does a parallelepiped have zero volume? This can happen only if the parallelepiped is flat, i.e., it is squashed into a lower dimension.
<latex-code>
\begin{tikzpicture}[thin border nodes, baseline=0]
\draw[line width=1mm, seq-orange] (-1,-.5) to["$P$"' black] (2,1);
\draw[vector, opacity=.75] (0,0) to["$v_1$" opacity=1] (2,1);
\draw[vector, opacity=.75] (0,0) to["$v_2$"' opacity=1] (-1,-.5);
\point at (0,0);
\end{tikzpicture}
\qquad
\begin{tikzpicture}[thin border nodes, baseline=0]
\node[coordinate] (X) at (1,.2) {};
\node[coordinate] (Y) at (-.7,-1) {};
\begin{scope}[x=(X), y=(Y), transformxy]
\draw[help lines, step=.5, opacity=.75] (-2,-1.5) grid (4,1.5);
\end{scope}
\def\va{(2,1)}
\def\vb{(1.5,-.5)}
\def\vc{(-1.5,0)}
\coordinate (v1) at ($4/2*(X) - 1/2*(Y)$);
\coordinate (v2) at ($3/2*(X) + 1*(Y)$);
\coordinate (v3) at ($-3/2*(X) - 1/2*(Y)$);
\filldraw[fill=seq-orange, opacity=.2, draw opacity=1, very thin]
(v1) -- ($(v1) + (v2)$) -- (v2) -- ($(v2) + (v3)$) -- (v3) -- ($(v3) + (v1)$) -- cycle;
\draw[vector] (0,0) to["$v_1$"] (v1);
\draw[vector] (0,0) to["$v_2$"] (v2);
\draw[vector] (0,0) to["$v_3$"'] (v3);
\node at ($1/2*(v1) + 1/2*(v2)$) {$P$};
\point at (0,0);
\end{tikzpicture}
</latex-code>
This means exactly that <m>\{v_1,v_2,\ldots,v_n\}</m> is <em>linearly dependent,</em> which by this <xref ref="det-defn-dep-det0"/> means that the matrix with rows <m>v_1,v_2,\ldots,v_n</m> has determinant zero. To summarize:
</p>
<note type-name="Key Observation">
<idx><h>Parallelepiped</h><h>flat</h></idx>
<p>
The parallelepiped defined by <m>v_1,v_2,\ldots,v_n</m> has zero volume if and only if the matrix with rows <m>v_1,v_2,\ldots,v_n</m> has zero determinant.
</p>
</note>
</subsection>
<subsection>
<title>Determinants and Volumes</title>
<p>
The key observation above is only the beginning of the story:
the volume of a parallelepiped is <em>always</em> a determinant.
</p>
<theorem xml:id="det-is-volume">
<title>Determinants and volumes</title>
<idx><h>Parallelepiped</h><h>volume of</h></idx>
<idx><h>Matrix</h><h>parallelepiped determined by</h></idx>
<idx><h>Determinant</h><h>and volumes</h></idx>
<idx><h>Volume</h><h>of a parallelepiped</h></idx>
<statement>
<p>
Let <m>v_1,v_2,\ldots,v_n</m> be vectors in <m>\R^n</m>, let <m>P</m> be the parallelepiped determined by these vectors, and let <m>A</m> be the matrix with rows <m>v_1,v_2,\ldots,v_n</m>. Then the absolute value of the determinant of <m>A</m> is the volume of <m>P</m>:
<me>
|\det(A)| = \vol(P).
</me>
<notation><usage>\vol(P)</usage><description>Volume of a region</description></notation>
</p>
</statement>
<proof visible="true">
<p>
Since the four <xref ref="det-defn-the-defn" text="title">defining properties</xref> characterize the determinant, they also characterize the absolute value of the determinant. Explicitly, <m>|\det|</m> is a function on square matrices which satisfies these properties:
<ol>
<li>
Doing a row replacement on <m>A</m> does not change <m>|\det(A)|</m>.
</li>
<li>
Scaling a row of <m>A</m> by a scalar <m>c</m> multiplies <m>|\det(A)|</m> by <m>|c|</m>.
</li>
<li>
Swapping two rows of a matrix does not change <m>|\det(A)|</m>.
</li>
<li>
The determinant of the identity matrix <m>I_n</m> is equal to <m>1</m>.
</li>
</ol>
The absolute value of the determinant is the <em>only</em> such function: indeed, by this <xref ref="det-defn-ref-compute"/>, if you do some number of row operations on <m>A</m> to obtain a matrix <m>B</m> in row echelon form, then
<me>
|\det(A)| =
\left|\frac{\text{(product of the diagonal entries of $B$)}}
{\text{(product of scaling factors used)}}\right|.
</me>
</p>
<p>
<notation><usage>\vol(A)</usage><description>Volume of the parallelepiped of a matrix</description></notation>
For a square matrix <m>A</m>, we abuse notation and let <m>\vol(A)</m> denote the volume of the paralellepiped determined by the rows of <m>A</m>. Then we can regard <m>\vol</m> as a function from the set of square matrices to the real numbers. We will show that <m>\vol</m> also satisfies the above four properties.
<ol>
<li>
For simplicity, we consider a row replacement of the form <m>R_n = R_n + cR_i</m>. The volume of a paralellepiped is the volume of its base, times its height: here the <q>base</q> is the paralellepiped determined by <m>v_1,v_2,\ldots,v_{n-1}</m>, and the <q>height</q> is the perpendicular distance of <m>v_n</m> from the base.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[line width=1mm, seq-blue] (0,0) to["base"' {pos=.3,sloped}] (2,1);
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap,opacity=1,pos=.7]{$v_1$} (2,1);
\draw[dashed, very thick, seq-red] (1,2) to["height"] (8/5,4/5);
\end{tikzpicture}
\qquad
\begin{tikzpicture}[thin border nodes, myxyz, scale=2]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-blue, opacity=.5, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\node[seq-blue] at (-.4,.5,0) {base};
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\draw[dashed, very thick, seq-red] (0,.3,1) to["height" pos=.55] (-.2,.2,0);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.4] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\end{tikzpicture}
</latex-code>
Translating <m>v_n</m> by a multiple of <m>v_i</m> moves <m>v_n</m> in a direction parallel to the base. This changes neither the base nor the height! Thus, <m>\vol(A)</m> is unchanged by row replacements.
<latex-code mode="bare">
\usetikzlibrary{math}
</latex-code>
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[line width=1mm, seq-blue] (0,0) to["base"' {pos=.3,sloped}] (2,1);
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap,opacity=1,pos=.7]{$v_1$} (2,1);
\draw[dashed, very thick, seq-red] (1,2) to["height"] (8/5,4/5);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (0,3/2) -- (2,5/2) -- (2,1) -- cycle;
\draw[line width=1mm, seq-blue] (0,0) to["base"' {pos=.3,sloped}] (2,1);
\draw[vector, opacity=.5] (0,0) -- node[auto,swap,pos=.8]{$v_2$} (1,2);
\draw[vector] (0,0) -- node[auto]{$v_2-.5v_1$} (0,3/2);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap,opacity=1,pos=.7]{$v_1$} (2,1);
\draw[dashed, very thick, seq-red] (0,3/2) to["height"] (3/5,3/10);
\end{tikzpicture}\\[3mm]
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-blue, opacity=.5, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\node[seq-blue] at (-.4,.5,0) {base};
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\draw[dashed, very thick, seq-red] (0,.3,1) to["height" pos=.55] (-.2,.2,0);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.4] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\def\va{(.2,1,0)}
\def\vb{(-1,0,0)}
\def\vc{(.1,.8,1)}
\tikzmath{
coordinate \vab;
coordinate \vac;
coordinate \vbc;
\vab = \va + \vb;
\vac = \va + \vc;
\vbc = \vb + \vc;
}
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-blue, opacity=.5, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\node[seq-blue] at (-.25,.35,0) {base};
\filldraw[fill=seq-orange, opacity=.2, shift={\vb}, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\draw[dashed, very thick, seq-red] \vc to["height" pos=.55] ($(-.2,.2,0)+.5*(.2,1,0)$);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\va}, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\vc}, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} \va;
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.8] {$v_2$} \vb;
\draw[vector] (0,0,0) -- \vc node[above] {$v_3+.5v_1$};
\draw[vector, opacity=.5] (0,0,0) -- node[auto,pos=.5] {$v_3$} (0,.3,1);
\end{tikzpicture}
</latex-code>
</li>
<li>
For simplicity, we consider a row scale of the form <m>R_n = cR_n.</m> This scales the length of <m>v_n</m> by a factor of <m>|c|</m>, which also scales the perpendicular distance of <m>v_n</m> from the base by a factor of <m>|c|</m>. Thus, <m>\vol(A)</m> is scaled by <m>|c|</m>.
<latex-code mode="bare">
\usetikzlibrary{math}
</latex-code>
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[line width=1mm, seq-blue] (0,0) to["base"' {pos=.3, sloped}] (2,1);
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap,opacity=1,pos=.7]{$v_1$} (2,1);
\draw[dashed, very thick, seq-red] (1,2) to["height"] (8/5,4/5);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (.75,1.5) -- (2.75,2.5) -- (2,1) -- cycle;
\draw[line width=1mm, seq-blue] (0,0) to["base"' {pos=.3, sloped}] (2,1);
\draw[vector, opacity=.5] (0,0) -- (1,2);
\draw[vector] (0,0) -- node[auto]{$\frac34v_2$} (.75,1.5);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap,opacity=1,pos=.7]{$v_1$} (2,1);
\draw[dashed, very thick, seq-red] (.75,1.5) to["$\frac34$\small height"] ($.75*(8/5,4/5)$);
\end{tikzpicture}\\[3mm]
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-blue, opacity=.5, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\node[seq-blue] at (-.4,.5,0) {base};
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\draw[dashed, very thick, seq-red] (0,.3,1) to["height" pos=.55] (-.2,.2,0);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.4] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\def\va{(.2,1,0)}
\def\vb{(-1,0,0)}
\def\vc{(0,.4,4/3)}
\tikzmath{
coordinate \vab;
coordinate \vac;
coordinate \vbc;
\vab = \va + \vb;
\vac = \va + \vc;
\vbc = \vb + \vc;
}
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-blue, opacity=.5, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\node[seq-blue] at (-.4,.5,0) {base};
\filldraw[fill=seq-orange, opacity=.2, shift={\vb}, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\draw[dashed, very thick, seq-red] \vc to["$\frac43$\small height" pos=.55] ($4/3*(-.2,.2,0)$);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- \va -- (\vac) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\va}, very thin]
(0,0,0) -- \vb -- (\vbc) -- \vc -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={\vc}, very thin]
(0,0,0) -- \vb -- (\vab) -- \va -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} \va;
\draw[vector, opacity=.4] (0,0,0) -- node[auto,pos=.5] {$v_2$} \vb;
\draw[vector] (0,0,0) -- node[auto,pos=.8] {$\frac 43v_3$} \vc;
\draw[vector, black!50!white] (0,0,0) -- (0,.3,1);
\end{tikzpicture}
</latex-code>
</li>
<li>
Swapping two rows of <m>A</m> just reorders the vectors <m>v_1,v_2,\ldots,v_n</m>, hence has no effect on the parallelepiped determined by those vectors. Thus, <m>\vol(A)</m> is unchanged by row swaps.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_1$} (2,1);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, scale=1.3, baseline=1.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_1$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_2$} (2,1);
\end{tikzpicture}\\[3mm]
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto] {$v_3$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_2$} (0,.3,1);
\end{tikzpicture}
$\quad\xrightarrow{\phantom{MMMM}}\quad$
\begin{tikzpicture}[thin border nodes, myxyz, scale=2, baseline=1.3cm]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\end{tikzpicture}
</latex-code>
</li>
<li>
The rows of the identity matrix <m>I_n</m> are the standard coordinate vectors <m>e_1,e_2,\ldots,e_n</m>. The associated paralellepiped is the unit cube, which has volume <m>1</m>. Thus, <m>\vol(I_n) = 1</m>.
</li>
</ol>
Since <m>|\det|</m> is the only function satisfying these properties, we have
<me>\vol(P) = \vol(A) = |\det(A)|.</me>
This completes the proof.
</p>
</proof>
</theorem>
<p>
Since <m>\det(A) = \det(A^T)</m> by the <xref ref="det-defn-trans-prop" text="title">transpose property</xref>, the absolute value of <m>\det(A)</m> is also equal to the volume of the paralellepiped determined by the <em>columns</em> of <m>A</m> as well.
</p>
<specialcase>
<title>Length</title>
<idx><h>Volume</h><h>and length</h></idx>
<p>
A <m>1\times 1</m> matrix <m>A</m> is just a number <m>\mat a</m>. In this case, the parallelepiped <m>P</m> determined by its one row is just the interval <m>[0,a]</m> (or <m>[a,0]</m> if <m>a\lt0</m>). The <q>volume</q> of a region in <m>\R^1 = \R</m> is just its length, so it is clear in this case that <m>\vol(P) = |a|</m>.
<latex-code>
\begin{tikzpicture}
\draw[very thick, draw=seq-orange] (0,0) -- node[above] {$\vol(\textcolor{seq-orange}{P}) = |a|$} (3,0);
\draw (0,.15) -- (0,-.15) node[below] {$0$}
(3,.15) -- (3,-.15) node[below] {$a$};
\end{tikzpicture}
</latex-code>
</p>
</specialcase>
<specialcase>
<title>Area</title>
<idx><h>Parallelepiped</h><h>parallelogram</h><h>area of</h></idx>
<p>
When <m>A</m> is a <m>2\times 2</m> matrix, its rows determine a parallelogram in <m>\R^2</m>. The <q>volume</q> of a region in <m>\R^2</m> is its area, so we obtain a formula for the area of a parallelogram: it is the determinant of the matrix whose rows are the vectors forming two adjacent sides of the parallelogram.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$\vec{a b}$} (1,2);
\draw[vector] (0,0) -- node[auto,swap,opacity=1]{$\vec{c d}$} (2,1);
\node at (6, 1.5) {area${}=\left|\det\mat{a b; c d}\right| = |ad-bc|$};
\end{tikzpicture}
</latex-code>
It is perhaps surprising that it is possible to compute the area of a parallelogram without trigonometry. It is a fun geometry problem to prove this formula by hand. [Hint: first think about the case when the first row of <m>A</m> lies on the <m>x</m>-axis.]
</p>
</specialcase>
<example>
<statement>
<p>
Find the area of the parallelogram with sides <m>(1,3)</m> and <m>(2,-3)</m>.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1]
\draw[help lines] (-1,-4) grid (4,4);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,3) -- (3,0) -- (2,-3) -- cycle;
\draw[vector] (0,0) -- (1,3);
\draw[vector] (0,0) -- (2,-3);
\end{tikzpicture}
</latex-code>
</p>
</statement>
<solution>
<p>
The area is
<me>
\left|\det\mat{1 3; 2 -3}\right| = |-3-6| = 9.
</me>
</p>
</solution>
</example>
<example>
<statement>
<p>
Find the area of the parallelogram in the picture.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1]
\draw[help lines] (-3,-1) grid (2,6);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (-2,1) -- (-1,5) -- (1,4) -- cycle;
\end{tikzpicture}
</latex-code>
</p>
</statement>
<solution>
<p>
We choose two adjacent sides to be the rows of a matrix. We choose the top two:
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1]
\draw[help lines] (-3,-1) grid (2,6);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (-2,1) -- (-1,5) -- (1,4) -- cycle;
\draw[vector] (-1,5) -- node[auto,whitebg,behind path] {$\vec{2 -1}$} (1,4);
\draw[vector] (-1,5) -- node[auto,swap,whitebg,behind path] {$\vec{-1 -4}$} (-2,1);
\end{tikzpicture}
</latex-code>
Note that we do not need to know where the origin is in the picture: vectors are determined by their length and direction, not where they start. The area is
<me>
\left|\det\mat{-1 -4; 2 -1}\right| = |1+8| = 9.
</me>
</p>
</solution>
</example>
<example>
<title>Area of a triangle</title>
<idx><h>Triangle</h><h>area of</h><see>Volume</see></idx>
<idx><h>Volume</h><h>of a triangle</h></idx>
<statement>
<p>
Find the area of the triangle with vertices
<m>(-1,-2), \,(2,-1),\,(1,3).</m>
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1]
\draw[help lines] (-2,-3) grid (3,4);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(-1,-2) -- (2,-1) -- (1,3) -- cycle;
\end{tikzpicture}
</latex-code>
</p>
</statement>
<solution>
<p>
Doubling a triangle makes a paralellogram. We choose two of its sides to be the rows of a matrix.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1]
\draw[help lines] (-2,-3) grid (5,5);
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(-1,-2) -- (2,-1) -- (1,3) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.1, very thin, dashed]
(2,-1) -- (4,4) -- (1,3);
\draw[vector] (-1,-2) -- node[auto,whitebg,swap,behind path] {$\vec{3 1}$} (2,-1);
\draw[vector] (-1,-2) -- node[auto,whitebg,behind path] {$\vec{2 5}$} (1,3);
\end{tikzpicture}
</latex-code>
The area of the parallelogram is
<me>
\left|\det\mat{2 5; 3 1}\right| = |2-15| = 13,
</me>
so the area of the triangle is <m>13/2</m>.
</p>
</solution>
</example>
<p>
You might be wondering: if the absolute value of the determinant is a volume, what is the geometric meaning of the determinant without the absolute value? The next remark explains that we can think of the determinant as a <em>signed</em> volume. If you have taken an integral calculus course, you probably computed negative areas under curves; the idea here is similar.
</p>
<remark>
<title>Signed volumes</title>
<idx><h>Volume</h><h>signed</h></idx>
<p>
The <xref ref="det-is-volume"/> on determinants and volumes tells us that the <em>absolute value</em> of the determinant is the volume of a paralellepiped. This raises the question of whether the sign of the determinant has any geometric meaning.
</p>
<p>
A <m>1\times 1</m> matrix <m>A</m> is just a number <m>\mat a</m>. In this case, the parallelepiped <m>P</m> determined by its one row is just the interval <m>[0,a]</m> if <m>a \geq 0</m>, and it is <m>[a,0]</m> if <m>a\lt0</m>. In this case, the sign of the determinant determines whether the interval is to the left or the right of the origin.
</p>
<p>
For a <m>2\times 2</m> matrix with rows <m>v_1,v_2</m>, the sign of the determinant determines whether <m>v_2</m> is counterclockwise or clockwise from <m>v_1</m>. That is, if the counterclockwise angle from <m>v_1</m> to <m>v_2</m> is less than <m>180^\circ</m>, then the determinant is positive; otherwise it is negative (or zero).
<latex-code>
<![CDATA[
\usetikzlibrary{angles}
\begin{tikzpicture}[thin border nodes, scale=1.3]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_1$} (2,1);
\coordinate (o) at (0,0);
\coordinate (v1) at (2,1);
\coordinate (v2) at (1,2);
\pic[draw, ->, angle radius=1cm] {angle=v1--o--v2};
\node at (1.5,-.7) {$\det\mat{\matrow{v_1}; \matrow{v_2}} > 0$};
\end{tikzpicture}
\qquad
\begin{tikzpicture}[thin border nodes, scale=1.3]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_1$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_2$} (2,1);
\coordinate (o) at (0,0);
\coordinate (v1) at (2,1);
\coordinate (v2) at (1,2);
\pic[draw, <-, angle radius=1cm] {angle=v1--o--v2};
\node at (1.5,-.7) {$\det\mat{\matrow{v_1}; \matrow{v_2}} < 0$};
\end{tikzpicture}
]]>
</latex-code>
For example, if <m>v_1 = {a\choose b}</m>, then the counterclockwise rotation of <m>v_1</m> by <m>90^\circ</m> is <m>v_2 = {-b\choose a}</m> by this <xref ref="linear-trans-rotation-matrix"/>, and
<me>
\det\mat{a b; -b a} = a^2 + b^2 > 0.
</me>
On the other hand, the <em>clockwise</em> rotation of <m>v_1</m> by <m>90^\circ</m> is <m>b\choose -a</m>, and
<me>
\det\mat{a b; b -a} = -a^2 - b^2 \lt 0.
</me>
</p>
<p>
For a <m>3\times 3</m> matrix with rows <m>v_1,v_2,v_3</m>, the <em>right-hand rule</em> determines the sign of the determinant. If you point the index finger of your right hand in the direction of <m>v_1</m> and your middle finger in the direction of <m>v_2</m>, then the determinant is positive if your thumb points roughly in the direction of <m>v_3</m>, and it is negative otherwise.
<latex-code>
\begin{tikzpicture}[thin border nodes, myxyz, scale=2]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_1$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto] {$v_2$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\node[resetxy] at (1,-.75) {$\det\mat{\matrow{v_1};\matrow{v_2};\matrow{v_3}}>0$};
\end{tikzpicture}
\qquad
\begin{tikzpicture}[thin border nodes, myxyz, scale=2]
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\filldraw[fill=seq-orange, opacity=.2, shift={(-1,0,0)}, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0,0) -- (.2,1,0) -- (.2,1.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(.2,1,0)}, very thin]
(0,0,0) -- (-1,0,0) -- (-1,.3,1) -- (0,.3,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, shift={(0,.3,1)}, very thin]
(0,0,0) -- (-1,0,0) -- (-.8,1,0) -- (.2,1,0) -- cycle;
\draw[vector] (0,0,0) -- node[auto,swap] {$v_2$} (.2,1,0);
\draw[vector, opacity=.4] (0,0,0) -- node[auto] {$v_1$} (-1,0,0);
\draw[vector] (0,0,0) -- node[auto] {$v_3$} (0,.3,1);
\node[resetxy] at (1,-.75) {$\det\mat{\matrow{v_1};\matrow{v_2};\matrow{v_3}}\lt0$};
\end{tikzpicture}
</latex-code>
</p>
<p>
In higher dimensions, the notion of signed volume is still important, but it is usually <em>defined</em> in terms of the sign of a determinant.
</p>
</remark>
</subsection>
<subsection>
<title>Volumes of Regions</title>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix with columns <m>v_1,v_2,\ldots,v_n</m>, and let <m>T\colon\R^n\to\R^n</m> be the associated <xref ref="matrix-trans-defn-of" text="title">matrix transformation</xref> <m>T(x)=Ax</m>. Then <m>T(e_1)=v_1</m> and <m>T(e_2)=v_2</m>, so <m>T</m> takes the unit cube <m>C</m> to the parallelepiped <m>P</m> determined by <m>v_1,v_2,\ldots,v_n</m>:
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3]
\begin{scope}[scale=1.7, yshift=.3cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\node at (.5, .5) {$C$};
\draw[vector] (0,0) -- node[auto]{$e_2$} (0,1);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap]{$e_1$} (1,0);
\coordinate (a) at (1.2, .5);
\end{scope}
\draw[->, thick] (a) to[bend left]
node[above=2pt] {$T$}
node[below=4pt] {$\mat{| |; v_1 v_2; | |}$}
($(a) + (2.8cm,0)$);
\begin{scope}[xshift=5cm]
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\draw[vector] (0,0) -- node[auto]{$v_2$} (1,2);
\draw[vector] (0,0) -- node[auto,swap]{$v_1$} (2,1);
\node at (1.5, 1.5) {$P$};
\end{scope}
\end{tikzpicture}
</latex-code>
Since the unit cube has volume <m>1</m> and its image has volume <m>|\det(A)|</m>, the transformation <m>T</m> scaled the volume of the cube by a factor of <m>|\det(A)|</m>. To rephrase:
</p>
<bluebox>
<p>
If <m>A</m> is an <m>n\times n</m> matrix with corresponding matrix transformation <m>T\colon\R^n\to\R^n</m>, and if <m>C</m> is the unit cube in <m>\R^n</m>, then the volume of <m>T(C)</m> is <m>|\det(A)|.</m>
</p>
</bluebox>
<p>
<notation><usage>T(S)</usage><description>The image of a region under a transformation</description></notation>
The notation <m>T(S)</m> means the image of the region <m>S</m> under the transformation <m>T</m>. In <xref ref="set-builder-notation" text="title">set builder notation</xref>, this is the subset
<me>T(S) = \bigl\{T(x)\mid x \text{ in } S\bigr\}. </me>
</p>
<p>
In fact, <m>T</m> scales the volume of <em>any</em> region in <m>\R^n</m> by the same factor, even for curvy regions.
</p>
<theorem xml:id="det-vol-regions">
<idx><h>Volume</h><h>of a region</h></idx>
<idx><h>Matrix transformation</h><h>and volumes</h></idx>
<idx><h>Linear transformation</h><h>and volumes</h><see>Matrix transformation</see></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix, and let <m>T\colon\R^n\to\R^n</m> be the associated matrix transformation <m>T(x)=Ax</m>. If <m>S</m> is any region in <m>\R^n</m>, then
<me>
\vol(T(S))=|\det(A)|\cdot\vol(S).
</me>
</p>
</statement>
<proof visible="true">
<p>
Let <m>C</m> be the unit cube, let <m>v_1,v_2,\ldots,v_n</m> be the columns of <m>A</m>, and let <m>P</m> be the paralellepiped determined by these vectors, so <m>T(C) = P</m> and <m>\vol(P) = |\det(A)|</m>. For <m>\epsilon > 0</m> we let <m>\epsilon C</m> be the cube with side lengths <m>\epsilon</m>, i.e., the paralellepiped determined by the vectors <m>\epsilon e_1,\epsilon e_2,\ldots,\epsilon e_n</m>, and we define <m>\epsilon P</m> similarly. By the second <xref ref="linear-trans-defn" text="title">defining property</xref>, <m>T</m> takes <m>\epsilon C</m> to <m>\epsilon P</m>. The volume of <m>\epsilon C</m> is <m>\epsilon^n</m> (we scaled each of the <m>n</m> standard vectors by a factor of <m>\epsilon</m>) and the volume of <m>\epsilon P</m> is <m>\epsilon^n|\det(A)|</m> (for the same reason), so we have shown that <m>T</m> scales the volume of <m>\epsilon C</m> by <m>|\det(A)|</m>.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1.3]
\begin{scope}[scale=1.7, yshift=.3cm]
\filldraw[very thin, black!50!white, fill=seq-orange!10!white]
(0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (.6,0) -- (.6,.6) -- (0,.6) -- cycle;
\draw[vector, black!50!white] (0, 0) -- (1, 0);
\draw[vector, black!50!white] (0, 0) -- (0, 1);
\draw[vector] (0,0) -- node[auto]{$\epsilon e_2$} (0,.6);
\draw[vector, opacity=.75] (0,0) -- node[auto,swap]{$\epsilon e_1$} (.6,0);
\node at (.3, .3) {$\epsilon C$};
\coordinate (a) at (1.2, .5);
\end{scope}
\node at (1.7/2, -.5) {$\vol(\epsilon C) = \epsilon^n$};
\draw[->, thick] (a) to[bend left]
node[above=2pt] {$T$}
node[below=4pt] {$\mat{| |; v_1 v_2; | |}$}
($(a) + (2.8cm,0)$);
\begin{scope}[xshift=5cm]
\filldraw[black!50!white, fill=seq-orange!10!white, very thin]
(0,0) -- (1,2) -- (3,3) -- (2,1) -- cycle;
\filldraw[fill=seq-orange, fill opacity=.2, very thin]
(0,0) -- (.6,1.2) -- (1.8,1.8) -- (1.2,.6) -- cycle;
\draw[vector, black!50!white] (0, 0) -- (1,2);
\draw[vector, black!50!white] (0, 0) -- (2,1);
\draw[vector] (0,0) -- node[auto]{$\epsilon v_2$} (.6,1.2);
\draw[vector] (0,0) -- node[auto,swap]{$\epsilon v_1$} (1.2,.6);
\node at (.9,.9) {$\epsilon P$};
\end{scope}
\node at (6.3, -.5) {$\vol(\epsilon P) = \epsilon^n|\det(A)|$};
\end{tikzpicture}
</latex-code>
</p>
<p>
By the first <xref ref="linear-trans-defn" text="title">defining property</xref>, the image of a translate of <m>\epsilon C</m> is a translate of <m>\epsilon P</m>:
<me>T(x + \epsilon C) = T(x) + \epsilon T(C) = T(x) + \epsilon P.</me>
Since a translation does not change volumes, this proves that <m>T</m> scales the volume of a translate of <m>\epsilon C</m> by <m>|\det(A)|</m>.
</p>
<p>
At this point, we need to use techniques from multivariable calculus, so we only give an idea of the rest of the proof. Any region <m>S</m> can be approximated by a collection of very small cubes of the form <m>x + \epsilon C</m>. The image <m>T(S)</m> is then approximated by the image of this collection of cubes, which is a collection of very small paralellepipeds of the form <m>T(x) + \epsilon P</m>.
<latex-code>
\def\curvy{(-37.3333, 2.6667)
.. controls (-37.3333, -5.3333) and (-26.6667, -10.6667) .. (-16, -24)
.. controls (-5.3333, -37.3333) and (5.3333, -58.6667) .. (18.6667, -48)
.. controls (32, -37.3333) and (48, 5.3333) .. (45.3333, 18.6667)
.. controls (42.6667, 32) and (21.3333, 16) .. (8, 13.3333)
.. controls (-5.3333, 10.6667) and (-10.6667, 21.3333) .. (-18.6667, 21.3333)
.. controls (-26.6667, 21.3333) and (-37.3333, 10.6667) .. cycle}
\begin{tikzpicture}[scale=1, thin border nodes]
\draw[help lines, black!25] (-2,-2) rectangle (2,2);
\begin{scope}[fill=seq-orange, fill opacity=.2, thin,
x=1.7*.7bp, y=1.7*.7bp, yshift=.4cm, xshift=-.2cm]
\expandafter\filldraw\curvy;
\expandafter\clip\curvy;
\fill[seq-red, opacity=.5, shift={(2*4,-4*4)}] (0,0) rectangle (4,4);
\coordinate (a) at (2*4,-4*4);
\draw[very thin, black!70!white, step=4] (-60,-60) grid (60,60);
\end{scope}
\draw[thin] (-1.2, -1.2) node[below] {$x + \epsilon C$} -- (a);
\node at (0,1.5) {$S$};
%\point at (0,0);
\draw[->, thick] (2.1,0) to[bend left, "$T$" above=1mm]
(8-2.1,0);
\begin{scope}[xshift=8cm]
\draw[help lines, black!25] (-2,-2) rectangle (2,2);
\begin{scope}[cm={2,1,1,2,(0,.5)}, x=.7bp, y=.7bp,
fill=seq-orange, fill opacity=.2, thin]
\expandafter\filldraw\curvy;
\expandafter\clip\curvy;
\fill[seq-red, opacity=.5, shift={(2*4,-4*4)}] (0,0) rectangle (4,4);
\draw[very thin, black!70!white, step=4] (-60,-60) grid (60,60);
\coordinate (b) at (3*4,-4*4);
\end{scope}
\draw[thin] (.9,-1.3) node[below] {$T(x) + \epsilon P$} -- (b);
\node at (-.7,1.5) {$T(S)$};
% \point at (0,0);
\end{scope}
\end{tikzpicture}
</latex-code>
The volume of <m>S</m> is closely approximated by the sum of the volumes of the cubes; in fact, as <m>\epsilon</m> goes to zero, the limit of this sum is precisely <m>\vol(S)</m>. Likewise, the volume of <m>T(S)</m> is equal to the sum of the volumes of the paralellepipeds, take in the limit as <m>\epsilon\to 0</m>. The key point is that <em>the volume of each cube is scaled by <m>|\det(A)|</m>.</em> Therefore, the sum of the volumes of the paralellepipeds is <m>|\det(A)|</m> times the sum of the volumes of the cubes. This proves that <m>\vol(T(S)) = |\det(A)|\vol(S).</m>
</p>
</proof>
</theorem>
<example>
<statement>
<p>
Let <m>S</m> be a half-circle of radius <m>1</m>, let
<me>A = \mat{1 2; 2 1},</me>
and define <m>T\colon\R^2\to\R^2</m> by <m>T(x)=Ax</m>. What is the area of <m>T(S)</m>?
<latex-code>
\begin{tikzpicture}
\begin{scope}[yshift=-.3cm]
\draw[grid lines] (-1.5,-.5) grid (1.5, 1.5);
\filldraw[fill=seq-orange, fill opacity=.2, thin]
(1,0) arc[start angle=0, end angle=180, radius=1] -- cycle;
\node at (0,.5) {$S$};
\end{scope}
\draw[->, thick] (2.1,0) to[bend left, "$T$" above=1mm]
node[below=1mm]{$\mat{1 2; 2 1}$} (7-2.1,0);
\begin{scope}[xshift=7cm]
\draw[grid lines] (-1.5,-2.5) grid (2.5, 2.5);
\begin{scope}[cm={1,2,2,1,(0,0)}]
\filldraw[fill=seq-orange, fill opacity=.2, thin]
(1,0) arc[start angle=0, end angle=180, radius=1] -- cycle;
\node at (0,.5) {$T(S)$};
\end{scope}
\end{scope}
\end{tikzpicture}
</latex-code>
</p>
</statement>
<solution>
<p>
The area of the unit circle is <m>\pi</m>, so the area of <m>S</m> is <m>\pi/2</m>. The transformation <m>T</m> scales areas by a factor of <m>|\det(A)| = |1 - 4| = 3</m>, so
<me>\vol(T(S)) = 3\vol(S) = \frac{3\pi}2.</me>
</p>
</solution>
</example>
<example>
<title>Area of an ellipse</title>
<idx><h>Volume</h><h>of an ellipse</h></idx>
<idx><h>Ellipse</h><h>area of</h><see>Volume</see></idx>
<statement>
<p>
Find the area of the interior <m>E</m> of the ellipse defined by the equation
<me>\left(\frac{2x-y}{2}\right)^2 + \left(\frac{y+3x}{3}\right)^2 = 1.</me>
</p>
</statement>
<solution>
<p>
This ellipse is obtained from the unit circle <m>X^2+Y^2=1</m> by the linear change of coordinates
<me>
\begin{split}
X \amp= \frac{2x-y}2 \\
Y \amp= \frac{y+3x}3.
\end{split}
</me>
In other words, if we define a linear transformation <m>T\colon\R^2\to\R^2</m> by
<me>
T\vec{x y} = \vec{(2x-y)/2 (y+3x)/3},
</me>
then <m>T{x\choose y}</m> lies on the unit circle <m>C</m> whenever <m>x\choose y</m> lies on <m>E</m>.
<latex-code>
\begin{tikzpicture}
\begin{scope}[xshift=7cm]
\draw[grid lines] (-1.5,-1.5) grid (1.5, 1.5);
\filldraw[fill=seq-orange, fill opacity=.2, thin]
(0,0) circle[radius=1];
\node at (0,0) {$C$};
\end{scope}
\draw[->, thick] (2.1,0) to[bend left, "$T$" above=1mm]
node[below=2mm]{$\mat{1 -1/2; 1 1/3}$} (7-2.1,0);
\begin{scope}[xshift=0cm]
\draw[grid lines] (-1.5,-2.5) grid (1.5, 2.5);
\begin{scope}[cm={2/5,-6/5,3/5,6/5,(0,0)}]
\filldraw[fill=seq-orange, fill opacity=.2, thin]
(0,0) circle[radius=1];
\node at (0,0) {$E$};
\end{scope}
\end{scope}
\end{tikzpicture}
</latex-code>
We compute the standard matrix <m>A</m> for <m>T</m> by evaluating on the standard coordinate vectors:
<me>
T\vec{1 0} = \vec{1 1} \qquad T\vec{0 1} = \vec{-1/2 1/3}
\quad\implies\quad A = \mat{1 -1/2; 1 1/3}.
</me>
Therefore, <m>T</m> scales areas by a factor of <m>|\det(A)| = |\frac13+\frac12| = \frac56.</m> The area of the unit circle is <m>\pi</m>, so
<me>\pi = \vol(C) = \vol(T(E)) = |\det(A)|\cdot\vol(E) = \frac56\vol(E),</me>
and thus the area of <m>E</m> is <m>6\pi/5</m>.
</p>
</solution>
</example>
<remark>
<title>Multiplicativity of <m>|\det|\,</m></title>
<idx><h>Determinant</h><h>multiplicativity property</h><h>and volumes</h></idx>
<p>
The above <xref ref="det-vol-regions"/> also gives a geometric reason for multiplicativity of the (absolute value of the) determinant. Indeed, let <m>A</m> and <m>B</m> be <m>n\times n</m> matrices, and let <m>T,U\colon\R^n\to\R^n</m> be the corresponding matrix transformations. If <m>C</m> is the unit cube, then
<me>
\begin{split}
\vol\bigl(T\circ U(C)\bigr) = \vol\bigl(T(U(C))\bigr)
\amp= |\det(A)|\vol(U(C)) \\