This repository has been archived by the owner on Aug 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 172
/
eigenvectors.xml
911 lines (838 loc) · 42.8 KB
/
eigenvectors.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
<?xml version="1.0" encoding="UTF-8"?>
<!--********************************************************************
Copyright 2017 Georgia Institute of Technology
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation. A copy of
the license is included in gfdl.xml.
*********************************************************************-->
<section xml:id="eigenvectors">
<title>Eigenvalues and Eigenvectors</title>
<objectives>
<ol>
<li>Learn the definition of eigenvector and eigenvalue.</li>
<li>Learn to find eigenvectors and eigenvalues geometrically.</li>
<li>Learn to decide if a number is an eigenvalue of a matrix, and if so, how to find an associated eigenvector.</li>
<li><em>Recipe:</em> find a basis for the <m>\lambda</m>-eigenspace.</li>
<li><em>Pictures:</em> whether or not a vector is an eigenvector, eigenvectors of standard matrix transformations.</li>
<li><em>Theorem:</em> the expanded invertible matrix theorem.</li>
<li><em>Vocabulary word:</em> <term>eigenspace</term>.</li>
<li><em>Essential vocabulary words:</em> <term>eigenvector</term>, <term>eigenvalue</term>.</li>
</ol>
</objectives>
<introduction>
<p>
In this section, we define eigenvalues and eigenvectors. These form the most important facet of the structure theory of square matrices. As such, eigenvalues and eigenvectors tend to play a key role in the real-life applications of linear algebra.
</p>
</introduction>
<subsection>
<title>Eigenvalues and Eigenvectors</title>
<p>
Here is the most important definition in this text.
</p>
<essential>
<idx><h>Eigenvalue</h><h>definition of</h></idx>
<idx><h>Eigenvalue</h><h>eigenvector for</h></idx>
<idx><h>Eigenvector</h><h>definition of</h></idx>
<idx><h>Eigenvector</h><h>eigenvalue for</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix.
<ol>
<li>
An <term>eigenvector</term> of <m>A</m> is a <em>nonzero</em> vector <m>v</m> in <m>\R^n</m> such that <m>Av=\lambda v</m>, for some scalar <m>\lambda</m>.
</li>
<li>
An <term>eigenvalue</term> of <m>A</m> is a scalar <m>\lambda</m> such that the equation <m>Av=\lambda v</m> has a <em>nontrivial</em> solution.
</li>
</ol>
If <m>Av = \lambda v</m> for <m>v\neq 0</m>, we say that <m>\lambda</m> is the <term>eigenvalue for</term> <m>v</m>, and that <m>v</m> is an <term>eigenvector for</term> <m>\lambda</m>.
</p>
</statement>
</essential>
<p>
The German prefix <q>eigen</q> roughly translates to <q>self</q> or <q>own</q>. An eigenvector of <m>A</m> is a vector that is taken to a multiple of itself by the matrix transformation <m>T(x)=Ax</m>, which perhaps explains the terminology. On the other hand, <q>eigen</q> is often translated as <q>characteristic</q>; we may think of an eigenvector as describing an intrinsic, or characteristic, property of <m>A</m>.
</p>
<note>
<p>
Eigenvalues and eigenvectors are only for square matrices.
</p>
</note>
<bluebox>
<p>
Eigenvectors are <em>by definition nonzero</em>. Eigenvalues may be equal to zero.
</p>
</bluebox>
<p>
We do not consider the zero vector to be an eigenvector: since <m>A0 = 0 = \lambda 0</m> for <em>every</em> scalar <m>\lambda</m>, the associated eigenvalue would be undefined.
</p>
<p>
If someone hands you a matrix <m>A</m> and a vector <m>v</m>, it is easy to check if <m>v</m> is an eigenvector of <m>A</m>: simply multiply <m>v</m> by <m>A</m> and see if <m>Av</m> is a scalar multiple of <m>v</m>. On the other hand, given just the matrix <m>A</m>, it is not obvious at all how to find the eigenvectors. We will learn how to do this in <xref ref="characteristic-polynomial"/>.
</p>
<example>
<title>Verifying eigenvectors</title>
<statement>
<p>
Consider the matrix
<me>
A = \mat{2 2; -4 8} \sptxt{and vectors} v = \vec{1 1} \qquad w = \vec{2 1}.
</me>
Which are eigenvectors? What are their eigenvalues?
</p>
</statement>
<solution>
<p>
We have
<me>
Av = \mat{2 2; -4 8}\vec{1 1} = \vec{4 4} = 4v.
</me>
Hence, <m>v</m> is an eigenvector of <m>A</m>, with eigenvalue <m>\lambda = 4</m>. On the other hand,
<me>
Aw = \mat{2 2; -4 8}\vec{2 1} = \vec{6 0}.
</me>
which is not a scalar multiple of <m>w</m>. Hence, <m>w</m> is not an eigenvector of <m>A</m>.
<latex-code>
\begin{tikzpicture}[thin border nodes, baseline=1.2cm, scale=.5]
\draw[grid lines] (-1, -1) grid (7, 6);
\draw[seq-red] (-1, -1) -- (6, 6);
\draw[seq-blue] (-1/2, -1) -- (3, 6);
\point[seq-red, "$v$" below right] at (1, 1);
\point[seq-red, "$Av$" below right] at (4, 4);
\point[seq-blue, "$w$" above left] at (1, 2);
\point[seq-blue, "$Aw$"] at (6, 0);
\point["0" above left] at (0,0);
\end{tikzpicture}\qquad
\begin{minipage}[c]{.3\linewidth}
$\color{seq-red}v$ is an eigenvector\\[5mm]
$\color{seq-blue}w$ is not an eigenvector
\end{minipage}
</latex-code>
</p>
</solution>
</example>
<example>
<title>Verifying eigenvectors</title>
<statement>
<p>
Consider the matrix
<me>
A = \mat{0 6 8; \frac 12 0 0; 0 \frac 12 0}
\sptxt{and vectors} v = \vec{16 4 1} \qquad w = \vec{2 2 2}.
</me>
Which are eigenvectors? What are their eigenvalues?
</p>
</statement>
<solution>
<p>
We have
<me>
Av = \mat{0 6 8; \frac 12 0 0; 0 \frac 12 0}\vec{16 4 1}
= \vec{32 8 2} = 2v.
</me>
Hence, <m>v</m> is an eigenvector of <m>A</m>, with eigenvalue <m>\lambda = 2</m>. On the other hand,
<me>
Aw = \mat{0 6 8; \frac 12 0 0; 0 \frac 12 0}\vec{2 2 2}
= \vec{28 1 1},
</me>
which is not a scalar multiple of <m>w</m>. Hence, <m>w</m> is not an eigenvector of <m>A</m>.
</p>
</solution>
</example>
<example>
<title>An eigenvector with eigenvalue <m>0</m></title>
<statement>
<p>
Let
<me>
A = \mat{1 3; 2 6} \qquad v = \vec{-3 1}.
</me>
Is <m>v</m> an eigenvector of <m>A</m>? If so, what is its eigenvalue?
</p>
</statement>
<solution>
<p>
The product is
<me>Av = \mat{1 3; 2 6}\vec{-3 1} = \vec{0 0} = 0v.</me>
Hence, <m>v</m> is an eigenvector with eigenvalue <em>zero</em>.
</p>
<p>
As noted above, an eigen<em>value</em> is allowed to be zero, but an eigen<em>vector</em> is not.
</p>
</solution>
</example>
<p>
<idx><h>Eigenvector</h><h>and collinearity</h></idx>
To say that <m>Av=\lambda v</m> means that <m>Av</m> and <m>\lambda v</m> are <em>collinear with the origin</em>. So, an eigenvector of <m>A</m> is a nonzero vector <m>v</m> such that <m>Av</m> and <m>v</m> lie on the same line through the origin. In this case, <m>Av</m> is a scalar multiple of <m>v</m>; the eigenvalue is the scaling factor.
<latex-code>
\begin{tikzpicture}[thin border nodes, baseline]
\draw[grid lines] (-2,-2) rectangle (2,2);
\clip (-2,-2) rectangle (2,2);
\coordinate (v) at (1/2,1/3);
\draw[seq-red!70] ($-5*(v)$) -- ($5*(v)$);
\point[seq-red, "$v$"] at (v);
\point[seq-red, "$Av$"] at ($2.5*(v)$);
\coordinate (w) at (-1/3,1);
\draw[seq-blue!70] ($-5*(w)$) -- ($5*(w)$);
\point[seq-blue, "$w$" above right] (w) at (w);
\point[seq-blue, "$Aw$"] at (-1.2, 1);
\point["0" {anchor=350, inner sep=3pt}] at (0,0);
\end{tikzpicture}\qquad
\begin{minipage}[c]{.3\linewidth}
$\color{seq-red}v$ is an eigenvector\\[5mm]
$\color{seq-blue}w$ is not an eigenvector
\end{minipage}
</latex-code>
For matrices that arise as the standard matrix of a linear transformation, it is often best to draw a picture, then find the eigenvectors and eigenvalues geometrically by studying which vectors are not moved off of their line. For a transformation that is defined geometrically, it is not necessary even to compute its matrix to find the eigenvectors and eigenvalues.
</p>
<specialcase xml:id="evec-eg-reflection">
<title>Reflection</title>
<idx><h>Reflection</h><h>eigenvectors of</h></idx>
<p>
Here is an example of this. Let <m>T\colon\R^2\to\R^2</m> be the linear transformation that reflects over the line <m>L</m> defined by <m>y=-x</m>, and let <m>A</m> be the matrix for <m>T</m>. We will find the eigenvalues and eigenvectors of <m>A</m> without doing any computations.
</p>
<p>
This transformation is defined geometrically, so we draw a picture.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[very thin, seq-violet, dashed] (-2,2) to["$L$" near end] (2,-2);
\draw[<->, seq-violet!70] (1.5,-1.05) to[bend left] (1.05,-1.5);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq1!50, -, shorten=0pt, thick] (0,2) -- (0,-2);
\point[seq1, "$u$" {left,text=seq1}] (a) at (0,-1);
\point[seq1, "$Au$" {above right, text=seq1}] (Ta) at (1,0);
\draw (a) -- (Ta);
\point["0" below left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq-red}u</m> is not an eigenvector, because <m>Au</m> is not collinear with <m>u</m> and the origin.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[very thin, seq-violet, dashed] (-2,2) to["$L$" near end] (2,-2);
\draw[<->, seq-violet!70] (1.5,-1.05) to[bend left] (1.05,-1.5);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq6!50, -, shorten=0pt, thick] (2/3,2) -- (-2/3,-2);
\point[seq6, "$z$" {right, text=seq6}] (a) at (.5,1.5);
\point[seq6, "$Az$" {below right, text=seq6}] (Ta) at (-1.5,-.5);
\draw (a) -- (Ta);
\point["0" left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq6}z</m> is not an eigenvector either.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[very thin, seq-violet, dashed] (-2,2) to["$L$" near end] (2,-2);
\draw[<->, seq-violet!70] (1.5,-1.05) to[bend left] (1.05,-1.5);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq2!50, -, shorten=0pt, thick] (2,2) -- (-2,-2);
\point[seq2, "$v$" {above left, text=seq2}] (b) at (1,1);
\point[seq2, "$Av$" {text=seq2, below right}] (Tb) at (-1,-1);
\draw (b) -- (Tb);
\point["0" left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq2}v</m> is an eigenvector because <m>Av</m> is collinear with <m>v</m> and the origin. The vector <m>Av</m> has the same length as <m>v</m>, but the opposite direction, so the associated eigenvalue is <m>-1</m>.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[very thin, seq-violet, dashed] (-2,2) to["$L$" near end] (2,-2);
\draw[<->, seq-violet!70] (1.5,-1.05) to[bend left] (1.05,-1.5);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq3!50, -, shorten=0pt, thick] (-2,2) -- (2,-2);
\point[seq3, "$w$" {text=seq3,inner sep=3pt, anchor=270}] (c) at (-1,1);
\point[seq3, "$Aw$" {text=seq3,inner sep=3pt, anchor=180}] (c) at (-1,1);
\draw (c) to[out=190, in=260, looseness=40] (c);
\point["0" below left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq3}w</m> is an eigenvector because <m>Aw</m> is collinear with <m>w</m> and the origin: indeed, <m>Aw</m> is equal to <m>w</m>! This means that <m>w</m> is an eigenvector with eigenvalue <m>1</m>.
</p>
<p>
It appears that all eigenvectors lie either on <m>L</m>, or on the line perpendicular to <m>L</m>. The vectors on <m>L</m> have eigenvalue <m>1</m>, and the vectors perpendicular to <m>L</m> have eigenvalue <m>-1</m>.
</p>
<figure>
<caption>An eigenvector of <m>A</m> is a vector <m>x</m> such that <m>Ax</m> is collinear with <m>x</m> and the origin. Click and drag the head of <m>x</m> to convince yourself that all such vectors lie either on <m>L</m>, or on the line perpendicular to <m>L</m>.</caption>
<mathbox source="demos/eigenspace.html?mat=0,-1:-1,0&nospace" height="500px"/>
</figure>
</specialcase>
<p>
We will now give five more examples of this nature
</p>
<example xml:id="evec-eg-projection">
<title>Projection</title>
<idx><h>Orthogonal projection</h><h>eigenvectors of</h></idx>
<statement>
<p>
Let <m>T\colon\R^2\to\R^2</m> be the linear transformation that projects a vector vertically onto the <m>x</m>-axis, and let <m>A</m> be the matrix for <m>T</m>. Find the eigenvalues and eigenvectors of <m>A</m> without doing any computations.
</p>
</statement>
<solution>
<p>
This transformation is defined geometrically, so we draw a picture.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq-violet, dashed, thick] (-2,0) to (2,0);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq1!50, -, shorten=0pt, thick] (2,-2) -- (-2,2);
\point[seq1, "$u$" {left,text=seq1}] (a) at (1,-1);
\point[seq1, "$Au$" {above right, text=seq1}] (Ta) at (1,0);
\draw (a) -- (Ta);
\point["0" below left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq-red}u</m> is not an eigenvector, because <m>Au</m> is not collinear with <m>u</m> and the origin.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq-violet, dashed, thick] (-2,0) to (2,0);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq6!50, -, shorten=0pt, thick] (2/3,2) -- (-2/3,-2);
\point[seq6, "$z$" {right, text=seq6}] (a) at (-.5,-1.5);
\point[seq6, "$Az$" {above, text=seq6}] (Ta) at (-.5,0);
\draw (a) -- (Ta);
\point["0" below right] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq6}z</m> is not an eigenvector either.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq-violet, dashed, thick] (-2,0) to (2,0);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\draw[seq2!50, -, shorten=0pt, thick] (0,2) -- (0,-2);
\point[seq2, "$v$" {above left, text=seq2}] (b) at (0,1);
\point[seq2, "$Av$" {text=seq2, below right}] (Tb) at (0,0);
\draw (b) -- (Tb);
\point["0" below left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq2}v</m> is an eigenvector. Indeed, <m>Av</m> is the zero vector, which is collinear with <m>v</m> and the origin; since <m>Av = 0v</m>, the associated eigenvalue is <m>0</m>.
<latex-code><![CDATA[
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq-violet, dashed, thick] (-2,0) to (2,0);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\point[seq3, "$w$" {text=seq3,inner sep=3pt, anchor=-35}] (c) at (1,0);
\point[seq3, "$Aw$" {text=seq3,inner sep=3pt, anchor=-145}] (c) at (1,0);
\draw (c) to[out=-125, in=-55, looseness=40] (c);
\point["0" below left] at (0, 0);
\end{scope}
\end{tikzpicture}
]]>
</latex-code>
The vector <m>\color{seq3}w</m> is an eigenvector because <m>Aw</m> is collinear with <m>w</m> and the origin: indeed, <m>Aw</m> is equal to <m>w</m>! This means that <m>w</m> is an eigenvector with eigenvalue <m>1</m>.
</p>
<p>
It appears that all eigenvectors lie on the <m>x</m>-axis or the <m>y</m>-axis. The vectors on the <m>x</m>-axis have eigenvalue <m>1</m>, and the vectors on the <m>y</m>-axis have eigenvalue <m>0</m>.
</p>
<figure>
<caption>An eigenvector of <m>A</m> is a vector <m>x</m> such that <m>Ax</m> is collinear with <m>x</m> and the origin. Click and drag the head of <m>x</m> to convince yourself that all such vectors lie on the coordinate axes.</caption>
<mathbox source="demos/eigenspace.html?mat=1,0:0,0&nospace" height="500px"/>
</figure>
</solution>
</example>
<example>
<title>Identity</title>
<idx><h>Identity matrix</h><h>eigenvectors of</h></idx>
<idx><h>Eigenvalue</h><h>identity matrix</h></idx>
<idx><h>Identity matrix</h><h>eigenvalues of</h></idx>
<idx><h>Eigenvector</h><h>identity matrix</h></idx>
<statement>
<p>
Find all eigenvalues and eigenvectors of the identity matrix <m>I_n</m>.
</p>
</statement>
<solution>
<p>
The identity matrix has the property that <m>I_nv = v</m> for all vectors <m>v</m> in <m>\R^n</m>. We can write this as <m>I_n v = 1\cdot v</m>, so <em>every</em> nonzero vector is an eigenvector with eigenvalue <m>1</m>.
</p>
<figure>
<caption>Every nonzero vector is an eigenvector of the identity matrix.</caption>
<mathbox source="demos/eigenspace.html?mat=1,0:0,1&nospace" height="500px"/>
</figure>
</solution>
</example>
<example>
<title>Dilation</title>
<idx><h>Dilation</h><h>eigenvectors of</h></idx>
<statement>
<p>
Let <m>T\colon\R^2\to\R^2</m> be the linear transformation that dilates by a factor of <m>1.5</m>, and let <m>A</m> be the matrix for <m>T</m>. Find the eigenvalues and eigenvectors of <m>A</m> without doing any computations.
</p>
</statement>
<solution>
<p>
We have
<me>
Av = T(v) = 1.5v
</me>
for every vector <m>v</m> in <m>\R^2</m>. Therefore, by definition every nonzero vector is an eigenvector with eigenvalue <m>1.5.</m>
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq2] (-1,-2) -- (1,2);
\point[seq2, "$v$" {left, text=seq2}] (b) at (.5,1);
\point[seq2, "$Av$" {text=seq2, right}] (Tb) at (.75,1.5);
\point["0" above left] at (0,0);
\end{tikzpicture}
</latex-code>
</p>
<figure>
<caption>Every nonzero vector is an eigenvector of a dilation matrix.</caption>
<mathbox source="demos/eigenspace.html?mat=1.5,0:0,1.5&nospace" height="500px"/>
</figure>
</solution>
</example>
<example xml:id="evecs-eg-shear">
<title>Shear</title>
<idx><h>Shear</h><h>eigenvectors of</h></idx>
<statement>
<p>
Let
<me>A = \mat{1 1; 0 1}</me>
and let <m>T(x) = Ax</m>, so <m>T</m> is a shear in the <m>x</m>-direction. Find the eigenvalues and eigenvectors of <m>A</m> without doing any computations.
</p>
</statement>
<solution>
<p>
In equations, we have
<me>
A\vec{x y} = \mat{1 1; 0 1}\vec{x y} = \vec{x+y y}.
</me>
This tells us that a shear takes a vector and adds its <m>y</m>-coordinate to its <m>x</m>-coordinate. Since the <m>x</m>-coordinate changes but not the <m>y</m>-coordinate, this tells us that any vector <m>v</m> with nonzero <m>y</m>-coordinate cannot be collinear with <m>Av</m> and the origin.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq2] (-1,-2) -- (1,2);
\point[seq2, "$v$" {above left, text=seq2}] (b) at (.5,1);
\point[seq2, "$Av$" {text=seq2, below}] (Tb) at (1.5,1);
\draw[|->, shorten=2pt] (b) -- (Tb);
\point["0" above left] at (0,0);
\end{tikzpicture}
</latex-code>
On the other hand, any vector <m>v</m> on the <m>x</m>-axis has zero <m>y</m>-coordinate, so it is not moved by <m>A</m>. Hence <m>v</m> is an eigenvector with eigenvalue <m>1</m>.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq3, thick] (-2,0) to (2,0);
\begin{scope}[arrows={|->}, shorten=2pt, font=\small]
\point[seq3, "$w$" {text=seq3,inner sep=3pt, anchor=-35}] (c) at (1,0);
\point[seq3, "$Aw$" {text=seq3,inner sep=3pt, anchor=-145}] (c) at (1,0);
\draw (c) to[out=-125, in=-55, looseness=40] (c);
\point["0" above] at (0,0);
\end{scope}
\end{tikzpicture}
</latex-code>
Accordingly, all eigenvectors of <m>A</m> lie on the <m>x</m>-axis, and have eigenvalue <m>1</m>.
</p>
<figure>
<caption>All eigenvectors of a shear lie on the <m>x</m>-axis. Click and drag the head of <m>x</m> to find the eigenvectors.</caption>
<mathbox source="demos/eigenspace.html?mat=1,1:0,1&nospace" height="500px"/>
</figure>
</solution>
</example>
<example xml:id="evecs-eg-rotation">
<title>Rotation</title>
<idx><h>Rotation</h><h>eigenvectors of</h></idx>
<statement>
<p>
Let <m>T\colon\R^2\to\R^2</m> be the linear transformation that rotates counterclockwise by <m>90^\circ</m>, and let <m>A</m> be the matrix for <m>T</m>. Find the eigenvalues and eigenvectors of <m>A</m> without doing any computations.
</p>
</statement>
<solution>
<p>
If <m>v</m> is any nonzero vector, then <m>Av</m> is rotated by an angle of <m>90^\circ</m> from <m>v</m>. Therefore, <m>Av</m> is not on the same line as <m>v</m>, so <m>v</m> is not an eigenvector. And of course, the zero vector is never an eigenvector.
<latex-code>
\begin{tikzpicture}[thin border nodes, scale=1, baseline]
\draw[grid lines] (-2,-2) grid (2,2);
\draw[seq2] (-1,-2) -- (1,2);
\point[seq2, "$v$" {below right, text=seq2}] (b) at (.5,1);
\point[seq2, "$Av$" {text=seq2, below}] (Tb) at (-1, .5);
\draw[|->, shorten=3pt] (b) arc[radius={sqrt(5/4)}, start angle={atan2(2,1)}, delta angle=90] (Tb);
\point["0" below right] at (0,0);
\end{tikzpicture}
</latex-code>
Therefore, this matrix <em>has no eigenvectors and eigenvalues.</em>
</p>
<figure>
<caption>This rotation matrix has no eigenvectors. Click and drag the head of <m>x</m> to find one.</caption>
<mathbox source="demos/eigenspace.html?mat=0,-1:1,0&nospace" height="500px"/>
</figure>
</solution>
</example>
<p>
Here we mention one basic fact about eigenvectors.
</p>
<fact xml:id="evecs-linindep">
<title>Eigenvectors with distinct eigenvalues are linearly independent</title>
<idx><h>Eigenvector</h><h>linear independence of</h></idx>
<statement>
<p>
Let <m>v_1,v_2,\ldots,v_k</m> be eigenvectors of a matrix <m>A</m>, and suppose that the corresponding eigenvalues <m>\lambda_1,\lambda_2,\ldots,\lambda_k</m> are <em>distinct</em> (all different from each other). Then <m>\{v_1,v_2,\ldots,v_k\}</m> is linearly independent.
</p>
</statement>
<proof>
<p>
Suppose that <m>\{v_1,v_2,\ldots,v_k\}</m> were linearly <em>de</em>pendent. According to the <xref ref="linindep-increasing-span">increasing span criterion</xref>, this means that for some <m>j</m>, the vector <m>v_j</m> is in <m>\Span\{v_1,v_2,\ldots,v_{j-1}\}.</m> If we choose the <em>first</em> such <m>j</m>, then <m>\{v_1,v_2,\ldots,v_{j-1}\}</m> is linearly independent. Note that <m>j > 1</m> since <m>v_1\neq 0</m>.
</p>
<p>
Since <m>v_j</m> is in <m>\Span\{v_1,v_2,\ldots,v_{j-1}\},</m>, we can write
<me>v_j = c_1v_1 + c_2v_2 + \cdots + c_{j-1}v_{j-1}</me>
for some scalars <m>c_1,c_2,\ldots,c_{j-1}</m>. Multiplying both sides of the above equation by <m>A</m> gives
<me>
\begin{split}
\lambda_jv_j =
Av_j \amp= A\bigl(c_1v_1 + c_2v_2 + \cdots + c_{j-1}v_{j-1}\bigr) \\
\amp= c_1Av_1 + c_2Av_2 + \cdots + c_{j-1}Av_{j-1} \\
\amp= c_1\lambda_1v_1 + c_2\lambda_2v_2 + \cdots + c_{j-1}\lambda_{j-1}v_{j-1}.
\end{split}
</me>
Subtracting <m>\lambda_j</m> times the first equation from the second gives
<me>
0 = \lambda_jv_j - \lambda_jv_j
= c_1(\lambda_1-\lambda_j)v_1 + c_2(\lambda_2-\lambda_j)v_2 + \cdots + c_{j-1}(\lambda_{j-1}-\lambda_j)v_{j-1}.
</me>
Since <m>\lambda_i\neq\lambda_j</m> for <m>i \lt j</m>, this is an equation of linear dependence among <m>v_1,v_2,\ldots,v_{j-1}</m>, which is impossible because those vectors are linearly independent. Therefore, <m>\{v_1,v_2,\ldots,v_k\}</m> must have been linearly independent after all.
</p>
</proof>
</fact>
<p>
When <m>k=2</m>, this says that if <m>v_1,v_2</m> are eigenvectors with eigenvalues <m>\lambda_1\neq\lambda_2</m>, then <m>v_2</m> is not a multiple of <m>v_1</m>. In fact, any nonzero multiple <m>cv_1</m> of <m>v_1</m> is also an eigenvector with eigenvalue <m>\lambda_1</m>:
<me>
A(cv_1) = cAv_1 = c(\lambda_1 v_1) = \lambda_1(cv_1).
</me>
</p>
<p>
As a consequence of the above <xref ref="evecs-linindep"/>, we have the following.
</p>
<bluebox xml:id="evecs-max-nr">
<idx><h>Eigenvalue</h><h>maximum number of</h></idx>
<p>
An <m>n\times n</m> matrix <m>A</m> has at most <m>n</m> eigenvalues.
</p>
</bluebox>
</subsection>
<subsection>
<title>Eigenspaces</title>
<p>
Suppose that <m>A</m> is a square matrix. We already know how to check if a given vector is an eigenvector of <m>A</m> and in that case to find the eigenvalue. Our next goal is to check if a given real number is an eigenvalue of <m>A</m> and in that case to find all of the corresponding eigenvectors. Again this will be straightforward, but more involved. The only missing piece, then, will be to find the eigenvalues of <m>A</m>; this is the main content of <xref ref="characteristic-polynomial"/>.
</p>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix, and let <m>\lambda</m> be a scalar. The eigenvectors with eigenvalue <m>\lambda</m>, if any, are the nonzero solutions of the equation <m>Av=\lambda v</m>. We can rewrite this equation as follows:
<me>
\begin{split}
\amp Av = \lambda v \\
\iff\quad \amp Av - \lambda v = 0 \\
\iff\quad \amp Av - \lambda I_nv = 0 \\
\iff\quad \amp(A - \lambda I_n)v = 0.
\end{split}
</me>
Therefore, the eigenvectors of <m>A</m> with eigenvalue <m>\lambda</m>, if any, are the nontrivial solutions of the matrix equation <m>(A-\lambda I_n)v = 0</m>, i.e., the nonzero vectors in <m>\Nul(A-\lambda I_n)</m>. If this equation has no nontrivial solutions, then <m>\lambda</m> is not an eigenvector of <m>A</m>.
</p>
<p>
<idx><h>Eigenspace</h><h>is a solution set</h></idx>
The above observation is important because it says that <em>finding the eigenvectors for a given eigenvalue means solving a homogeneous system of equations.</em> For instance, if
<me>
A = \mat{7 1 3; -3 2 -3; -3 -2 -1},
</me>
then an eigenvector with eigenvalue <m>\lambda</m> is a nontrivial solution of the matrix equation
<me>\mat{7 1 3; -3 2 -3; -3 -2 -1}\vec{x y z} = \lambda \vec{x y z}.</me>
This translates to the system of equations
<me>
\syseq{
7x + y + 3z = \lambda x ;
-3x + 2y - 3z = \lambda y ;
-3x - 2y - z = \lambda z
}
\quad\xrightarrow{\phantom{MMM}}\quad
\syseq{
(7-\lambda)x + y + 3z = 0 ;
-3x + (2-\lambda)y - 3z = 0 ;
-3x - 2y + (-1-\lambda)z = 0\rlap.
}
</me>
This is the same as the homogeneous matrix equation
<me>
\mat{7-\lambda, 1 3; -3 2-\lambda, -3; -3 -2 -1-\lambda}\vec{x y z} = 0,
</me>
i.e., <m>(A-\lambda I_3)v = 0</m>.
</p>
<definition>
<idx><h>Eigenspace</h><h>definition of</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix, and let <m>\lambda</m> be an eigenvalue of <m>A</m>. The <term><m>\lambda</m>-eigenspace</term> of <m>A</m> is the solution set of <m>(A-\lambda I_n)v=0</m>, i.e., the subspace <m>\Nul(A-\lambda I_n)</m>.
</p>
</statement>
</definition>
<p>
<idx><h>Eigenspace</h><h>is a subspace</h></idx>
The <m>\lambda</m>-eigenspace is a subspace because it is the null space of a matrix, namely, the matrix <m>A-\lambda I_n</m>. This subspace consists of the zero vector and all eigenvectors of <m>A</m> with eigenvalue <m>\lambda</m>.
</p>
<note>
<p>
Since a nonzero subspace is infinite, <em>every eigenvalue has infinitely many eigenvectors</em>. (For example, multiplying an eigenvector by a nonzero scalar gives another eigenvector.) On the other hand, there can be at most <m>n</m> linearly independent eigenvectors of an <m>n\times n</m> matrix, since <m>\R^n</m> has dimension <m>n</m>.
</p>
</note>
<example>
<title>Computing eigenspaces</title>
<statement>
<p>
For each of the numbers <m>\lambda = -2, 1, 3</m>, decide if <m>\lambda</m> is an eigenvalue of the matrix
<me>A = \mat{2 -4; -1 -1},</me>
and if so, compute a basis for the <m>\lambda</m>-eigenspace.
</p>
</statement>
<solution>
<p>
The number <m>3</m> is an eigenvalue of <m>A</m> if and only if <m>\Nul(A-3I_2)</m> is nonzero. Hence, we have to solve the matrix equation <m>(A-3I_2)v = 0</m>. We have
<me>
A - 3I_2 = \mat{2 -4; -1 -1} - 3\mat{1 0; 0 1} = \mat{-1 -4; -1 -4}.
</me>
The reduced row echelon form of this matrix is
<me>
\mat{1 4; 0 0}
\quad\xrightarrow[\text{form}]{\text{parametric}}\quad
\syseq{x = -4y; y = y}
\quad\xrightarrow[\text{vector form}]{\text{parametric}}\quad
\vec{x y} = y\vec{-4 1}.
</me>
Since <m>y</m> is a free variable, the null space of <m>A-3I_2</m> is nonzero, so <m>3</m> is an eigenvector. A basis for the <m>3</m>-eigenspace is <m>\bigl\{{-4\choose 1}\bigr\}.</m>
</p>
<p>
Concretely, we have shown that the eigenvectors of <m>A</m> with eigenvalue <m>3</m> are exactly the nonzero multiples of <m>{-4\choose 1}</m>. In particular, <m>-4\choose 1</m> is an eigenvector, which we can verify:
<me>
\mat{2 -4; -1 -1}\vec{-4 1} = \vec{-12 3} = 3\vec{-4 1}.
</me>
</p>
<p>
The number <m>1</m> is an eigenvalue of <m>A</m> if and only if <m>\Nul(A-I_2)</m> is nonzero. Hence, we have to solve the matrix equation <m>(A-I_2)v = 0</m>. We have
<me>
A - I_2 = \mat{2 -4; -1 -1} - \mat{1 0; 0 1} = \mat{1 -4; -1 -2}.
</me>
This matrix has determinant <m>-6</m>, so it is invertible. By the <xref ref="imt-1"/>, we have <m>\Nul(A-I_2) = \{0\}</m>, so <m>1</m> is not an eigenvalue.
</p>
<p>
The eigenvectors of <m>A</m> with eigenvalue <m>-2</m>, if any, are the nonzero solutions of the matrix equation <m>(A+2I_2)v = 0</m>. We have
<me>
A + 2I_2 = \mat{2 -4; -1 -1} + 2\mat{1 0; 0 1} = \mat{4 -4; -1 1}.
</me>
The reduced row echelon form of this matrix is
<me>
\mat{1 -1; 0 0}
\quad\xrightarrow[\text{form}]{\text{parametric}}\quad
\syseq{x = y; y = y}
\quad\xrightarrow[\text{vector form}]{\text{parametric}}\quad
\vec{x y} = y\vec{1 1}.
</me>
Hence there exist eigenvectors with eigenvalue <m>-2</m>, namely, any nonzero multiple of <m>{1\choose 1}.</m> A basis for the <m>-2</m>-eigenspace is <m>\bigl\{{1\choose 1}\bigr\}.</m>
</p>
<figure>
<caption>The <m>3</m>-eigenspace is the line spanned by <m>{-4\choose 1}.</m> This means that <m>A</m> scales every vector in that line by a factor of <m>3</m>. Likewise, the <m>-2</m>-eigenspace is the line spanned by <m>{1\choose 1}.</m> Click and drag the vector <m>x</m> around to see how <m>A</m> acts on that vector.</caption>
<mathbox source="demos/eigenspace.html?mat=2,-4:-1,-1&nomult" height="500px"/>
</figure>
</solution>
</example>
<example>
<title>Computing eigenspaces</title>
<statement>
<p>
For each of the numbers <m>\lambda=0, \frac 12, 2</m>, decide if <m>\lambda</m> is an eigenvector of the matrix
<me>A = \mat{7/2 0 3; -3/2 2 -3; -3/2 0 -1},</me>
and if so, compute a basis for the <m>\lambda</m>-eigenspace.
</p>
</statement>
<solution>
<p>
The number <m>2</m> is an eigenvalue of <m>A</m> if and only if <m>\Nul(A-2I_3)</m> is nonzero. Hence, we have to solve the matrix equation <m>(A-2I_3)v = 0</m>. We have
<me>
A - 2I_3 = \mat{7/2 0 3; -3/2 2 -3; -3/2 0 1} - 2\mat{1 0 0; 0 1 0; 0 0 1}
= \mat{3/2 0 3; -3/2 0 -3; -3/2 0 -3}.
</me>
The reduced row echelon form of this matrix is
<me>
\mat{1 0 2; 0 0 0; 0 0 0}
\quad\xrightarrow[\text{form}]{\text{parametric}}\quad
\syseq{x = -2z; y = y; z = z}
\quad\xrightarrow[\text{vector form}]{\text{parametric}}\quad
\vec{x y z} = y\vec{0 1 0} + z\vec{-2 0 1}.
</me>
The matrix <m>A-2I_3</m> has two free variables, so the null space of <m>A-2I_3</m> is nonzero, and thus <m>2</m> is an eigenvector. A basis for the <m>2</m>-eigenspace is
<me>\left\{\vec{0 1 0},\,\vec{-2 0 1}\right\}.</me>
This is a <em>plane</em> in <m>\R^3</m>.
</p>
<p>
The eigenvectors of <m>A</m> with eigenvalue <m>\frac 12</m>, if any, are the nonzero solutions of the matrix equation <m>(A-\frac 12I_3)v = 0</m>. We have
<me>
A - \frac 12I_3 = \mat{7/2 0 3; -3/2 2 -3; -3/2 0 1} - \frac 12\mat{1 0 0; 0 1 0; 0 0 1}
= \mat{3 0 3; -3/2 3/2 -3; -3/2 0 -3/2}.
</me>
The reduced row echelon form of this matrix is
<me>
\mat{1 0 1; 0 1 -1; 0 0 0}
\quad\xrightarrow[\text{form}]{\text{parametric}}\quad
\syseq{x = -z; y = z; z = z}
\quad\xrightarrow[\text{vector form}]{\text{parametric}}\quad
\vec{x y z} = z\vec{-1 1 1}.
</me>
Hence there exist eigenvectors with eigenvalue <m>\frac 12</m>, so <m>\frac 12</m> is an eigenvalue. A basis for the <m>\frac 12</m>-eigenspace is
<me>\left\{\vec{-1 1 1}\right\}.</me>
This is a <em>line</em> in <m>\R^3</m>.
</p>
<p>
The number <m>0</m> is an eigenvalue of <m>A</m> if and only if <m>\Nul(A-0I_3) = \Nul(A)</m> is nonzero. This is the same as asking whether <m>A</m> is noninvertible, by the <xref ref="imt-1"/>. The determinant of <m>A</m> is <m>\det(A) = 2\neq 0</m>, so <m>A</m> is invertible by the <xref ref="det-defn-invert-prop">invertibility property</xref>. It follows that <m>0</m> is not an eigenvalue of <m>A</m>.
</p>
<figure>
<caption>The <m>2</m>-eigenspace is the violet plane. This means that <m>A</m> scales every vector in that plane by a factor of <m>2</m>. The <m>\frac 12</m>-eigenspace is the green line. Click and drag the vector <m>x</m> around to see how <m>A</m> acts on that vector.</caption>
<mathbox source="demos/eigenspace.html?mat=7/2,0,3:-3/2,2,-3:-3/2,0,-1&nomult" height="500px"/>
</figure>
</solution>
</example>
<example>
<title>Reflection</title>
<idx><h>Reflection</h><h>eigenspaces of</h></idx>
<statement>
<p>
Let <m>T\colon\R^2\to\R^2</m> be the linear transformation that reflects over the line <m>L</m> defined by <m>y=-x</m>, and let <m>A</m> be the matrix for <m>T</m>. Find all eigenspaces of <m>A</m>.
</p>
</statement>
<solution>
<p>
We showed in this <xref ref="evec-eg-reflection"/> that all eigenvectors with eigenvalue <m>1</m> lie on <m>L</m>, and all eigenvectors with eigenvalue <m>-1</m> lie on the line <m>L^\perp</m> that is perpendicular to <m>L</m>. Hence, <m>L</m> is the <m>1</m>-eigenspace, and <m>L^\perp</m> is the <m>-1</m>-eigenspace.
</p>
<p>
None of this required any computations, but we can verify our conclusions using algebra. First we compute the matrix <m>A</m>:
<me>
T\vec{1 0} = \vec{0 -1} \qquad
T\vec{0 1} = \vec{-1 0} \quad\implies\quad
A = \mat{0 -1; -1 0}.
</me>
Computing the <m>1</m>-eigenspace means solving the matrix equation <m>(A-I_2)v=0</m>. We have
<me>
A-I_2 = \mat{0 -1; -1 0} - \mat{1 0; 0 1} = \mat{-1 -1; -1 -1}
\quad\xrightarrow{\text{RREF}}\quad\mat{1 1; 0 0}.
</me>
The parametric form of the solution set is <m>x = -y</m>, or equivalently, <m>y = -x</m>, which is exactly the equation for <m>L</m>. Computing the <m>-1</m>-eigenspace means solving the matrix equation <m>(A+I_2)v=0</m>; we have
<me>
A+I_2 = \mat{0 -1; -1 0} + \mat{1 0; 0 1} = \mat{1 -1; -1 1}
\quad\xrightarrow{\text{RREF}}\quad\mat{1 -1; 0 0}.
</me>
The parametric form of the solution set is <m>x = y</m>, or equivalently, <m>y = x</m>, which is exactly the equation for <m>L^\perp</m>.
</p>
<figure>
<caption>The violet line <m>L</m> is the <m>1</m>-eigenspace, and the green line <m>L^\perp</m> is the <m>-1</m>-eigenspace.</caption>
<mathbox source="demos/eigenspace.html?mat=0,-1:-1,0&nomult" height="500px"/>
</figure>
</solution>
</example>
<bluebox>
<title>Recipes: Eigenspaces</title>
<idx><h>Eigenspace</h><h>computation</h></idx>
<idx><h>Eigenvector</h><h>computation</h></idx>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix and let <m>\lambda</m> be a number.
<ol>
<li>
<m>\lambda</m> is an eigenvalue of <m>A</m> if and only if <m>(A-\lambda I_n)v = 0</m> has a nontrivial solution, if and only if <m>\Nul(A-\lambda I_n)\neq\{0\}.</m>
</li>
<li>
In this case, finding a basis for the <m>\lambda</m>-eigenspace of <m>A</m> means finding a basis for <m>\Nul(A-\lambda I_n)</m>, which can be done by finding the parametric vector form of the solutions of the homogeneous system of equations <m>(A-\lambda I_n)v = 0</m>.
</li>
<li>
The dimension of the <m>\lambda</m>-eigenspace of <m>A</m> is equal to the number of free variables in the system of equations <m>(A-\lambda I_n)v = 0</m>, which is the number of columns of <m>A - \lambda I_n</m> without pivots.
</li>
<li>
The eigenvectors with eigenvalue <m>\lambda</m> are the nonzero vectors in <m>\Nul(A-\lambda I_n),</m> or equivalently, the nontrivial solutions of <m>(A-\lambda I_n)v = 0</m>.
</li>
</ol>
</p>
</bluebox>
<p>
We conclude with an observation about the <m>0</m>-eigenspace of a matrix.
</p>
<fact xml:id="evecs-eval0">
<idx><h>Eigenvalue</h><h>zero</h></idx>
<idx><h>Eigenspace</h><h>and the null space</h></idx>
<idx><h>Null space</h><h>is the <m>0</m>-eigenspace</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix.
<ol>
<li>
The number <m>0</m> is an eigenvalue of <m>A</m> if and only if <m>A</m> is not invertible.
</li>
<li>
In this case, the <m>0</m>-eigenspace of <m>A</m> is <m>\Nul(A)</m>.
</li>
</ol>
</p>
</statement>
<proof visible="true">
<p>
We know that <m>0</m> is an eigenvalue of <m>A</m> if and only if <m>\Nul(A - 0I_n) = \Nul(A)</m> is nonzero, which is equivalent to the noninvertibility of <m>A</m> by the <xref ref="imt-1"/>. In this case, the <m>0</m>-eigenspace is by definition <m>\Nul(A-0I_n) = \Nul(A)</m>.
</p>
</proof>
</fact>
<p>
Concretely, an eigenvector with eigenvalue <m>0</m> is a nonzero vector <m>v</m> such that <m>Av=0v</m>, i.e., such that <m>Av = 0</m>. These are exactly the nonzero vectors in the null space of <m>A</m>.
</p>
</subsection>
<subsection>
<title>The Invertible Matrix Theorem: Addenda</title>
<p>
We now have two new ways of saying that a matrix is invertible, so we add them to the <xref ref="imt-1" text="title">invertible matrix theorem</xref>.
</p>
<theorem type-name="Invertible Matrix Theorem" xml:id="imt-2">
<idx><h>Invertible matrix theorem</h></idx>
<idx><h>Invertible matrix</h><h>invertible matrix theorem</h></idx>
<idx><h>Invertible transformation</h><h>and invertible matrices</h></idx>
<idx><h>Reduced row echelon form</h><h>and invertibility</h></idx>
<idx><h>System of linear equations</h><h>trivial solution</h><h>and invertibility</h></idx>
<idx><h>System of linear equations</h><h>nontrivial solution</h><h>and invertibility</h></idx>
<idx><h>Null space</h><h>and invertibility</h></idx>
<idx><h>Linear independence</h><h>and invertibility</h></idx>
<idx><h>One-to-one</h><h>and invertibility</h></idx>
<idx><h>Onto</h><h>and invertibility</h></idx>
<idx><h>Matrix equation</h><h>always consistent</h><h>and invertibility</h></idx>
<idx><h>Column space</h><h>and invertibility</h></idx>
<idx><h>Invertible matrix</h><h>determinant of</h></idx>
<idx><h>Determinant</h><h>invertibility property</h></idx>
<idx><h>Eigenvalue</h><h>and invertibility</h></idx>
<statement>
<p>
Let <m>A</m> be an <m>n\times n</m> matrix, and let <m>T\colon\R^n\to\R^n</m> be the matrix transformation <m>T(x) = Ax</m>. The following statements are equivalent:
<ol>
<li><m>A</m> is invertible.</li>
<li><m>A</m> has <m>n</m> pivots.</li>
<li><m>\Nul(A) = \{0\}</m>.</li>
<li>The columns of <m>A</m> are linearly independent.</li>
<li>The columns of <m>A</m> span <m>\R^n</m>.</li>
<li><m>Ax=b</m> has a unique solution for each <m>b</m> in <m>\R^n</m>.</li>
<li><m>T</m> is invertible.</li>
<li><m>T</m> is one-to-one.</li>
<li><m>T</m> is onto.</li>
<li><m>\det(A) \neq 0</m>.</li>
<li><m>0</m> is not an eigenvalue of <m>A</m>.</li>
</ol>
</p>
</statement>
</theorem>
</subsection>
</section>